Molecules of natural origin with antimicrobial activity coupled with active packaging for food preservation
PDF (Spanish)

Keywords

active packaging
antimicrobial compounds
food preservation
food safety
natural

How to Cite

Molecules of natural origin with antimicrobial activity coupled with active packaging for food preservation. (2026). Digital ciencia@uaqro, 19(1), 68-87. https://doi.org/10.61820/dcuqa.2395-8847.1779

Abstract

In order to prevent food spoilage, a great number of techniques and technologies have been developed over time in the food industry. Among these, packaging aims to protect food and extend its shelf life based on the containers’ materials. Nonetheless, fulfilling basic protection needs is irrelevant given the significant economic and nutritional loss due to the rapid food spoilage caused by the current packaging. Additionally, there is a growing demand both for fresh food with fewer synthetic compounds, and less waste generation. Such concerns led to the creation of active packaging, which can keep food safe for a long period without the need for synthetic compounds. Its materials slow the spoilage process through naturally occurring
compounds, which inhibit the growth of foodborne pathogens, thus reducing the incidence of illnesses caused by them. Its effectiveness rate is determined by the food characteristics, type of packaging, and molecules used. Therefore, this review explores the antimicrobial effect of various natural sources implemented in this technology (antioxidants, essential oils, and
antimicrobial of animal origin) and their effectiveness according to the material and type of packaging.

PDF (Spanish)

References

Al-Baarri, A.N., Damayanti, N.T., Legowo, A.M., Tekiner, İ.H. y Hayakawa, S. (2019). Enhanced antibacterial activity of lactoperoxidase-thiocyanate-hydrogen peroxide system in reduced-lactose milk whey. International Journal of Food Science, 2019(1). https://doi.org/10.1155/2019/8013402

Aljohani, A.B., Al-Hejin, A.M. y Shori, A.B. (2023). Bacteriocins as promising antimicrobial peptides, definition, classification, and their potential applications in cheeses. Food Science and Technology (Campinas), 43(5). https://doi.org/10.1590/fst.118021

Aloui, H. y Khwaldia, K. (2016). Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1080-1103. https://doi.org/10.1111/1541-4337.12226

Asare, P.T., Zurfluh, K., Greppi, A., Lynch, D., Schwab, C., Stephan, R. y Lacroix, C. (2020). Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat Campylobacter spp. Isolates. Microorganisms, 8(1), 78. https://doi.org/10.3390/microorganisms8010078

Ashfaq, A., Khursheed, N., Fatima, S., Anjum, Z. y Younis, K. (2022). Application of nanotechnology in food packaging: pros and cons. Journal of Agriculture and Food Research, 7, 100270. https://doi.org/10.1016/j.jafr.2022.100270

Azhar, N.S., Zin, N.H.M. y Hamid, T.H.T.A. (2017). Lactococcus Lactis strain A5 producing nisin-like bacteriocin active against gram positive and negative bacteria. Tropical Life Sciences Research, 28(2), 107-118. https://doi.org/10.21315/tlsr2017.28.2.8

Bahrami, A., Delshadi, R., Jafari, S.M. y Williams, L. (2019). Nanoencapsulated nisin: an engineered natural antimicrobial system for the food industry. Trends in Food Science & Technology, 94, 20-31. https://doi.org/10.1016/j.tifs.2019.10.002

Batiha, G.E., Hussein, D.E., Algammal, A.M., George, T.T., Jeandet, P., Al-Snafi, A.E., Tiwari, A., Pamplona Pagnossa, J., Lima, C.M., Thorat, N.D., Zahoor, M., El-Esawi, M., Dey, A., Alghamdi, S., Hetta, H.F. y Cruz-Martins, N. (2021). Application of natural antimicrobials in food preservation: recent views. Food Control, 126, 108066. https://doi.org/10.1016/j.foodcont.2021.108066

Bedoya-Serna, C.M., Dacanal, G.C., Fernandes, A.M. y Pinho, S.C. (2018). Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian Journal of Microbiology, 49(4), 929-935. https://doi.org/10.1016/j.bjm.2018.05.004

Bennett, S., Said, L.B., Lacasse, P., Malouin, F. y Fliss, I. (2021). Susceptibility to nisin, bactofencin, pediocin and reuterin of multidrug resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis causing bovine mastitis. Antibiotics, 10(11), 1418. https://doi.org/10.3390/antibiotics10111418

Caicedo-Perea, C., Solís-Molina, M. y Jiménez-Rosero, H. (2022). Empaques inteligentes: definiciones, tipologías y aplicaciones. Informador Técnico, 86(2), 220-253. https://doi.org/10.23850/22565035.3985

Cañaveral Sanchez, I., Chalarca Vélez, J.R. y Gaviria Arias, D. (2020). Bacteriocinas: visión básica y aplicada. Alimentos, Ciencia e Ingeniería, 27(2), 7-33. https://revistas.uta.edu.ec/index.php/aci/article/view/938

Carpena, M., Nuñez-Estevez, B., Soria-Lopez, A., Garcia-Oliveira, P. y Prieto, M.A. (2021). Essential oils and their application on active packaging systems: a review. Resources, 10(1), 7. https://doi.org/10.3390/resources10010007

Chan, K.T., Song, X., Shen, L., Liu, N., Zhou, X., Cheng, L. y Chen, J. (2023). Nisin and its application in oral diseases. Journal of Functional Foods, 105, 105559. https://doi.org/10.1016/j.jff.2023.105559

Chatzidaki, M.D., Balkiza, F., Gad, E., Alexandraki, V., Avramiotis, S., Georgalaki, M., Papadimitriou, V., Tsakalidou, E., Papadimitriou, K. y Xenakis, A. (2019). Reverse micelles as nano-carriers of nisin against foodborne pathogens. Part II: the case of essential oils. Food Chemistry, 278, 415-423. https://doi.org/10.1016/j.foodchem.2018.11.078

Deshmukh, R.K. y Gaikwad, K.K. (2022). Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Conversion and Biorefinery, 14, 4419-4440. https://doi.org/10.1007/s13399-022-02623-w

Erdogˇrul, Ö. y Şener, H. (2005). The contamination of various fruit and vegetable with Enterobius vermicularis, Ascaris eggs, Entamoeba histolyca cysts and Giardia cysts. Food Control, 16(6), 557-560. https://doi.org/10.1016/j.foodcont.2004.06.016

Food and Drug Administration. (1998). Direct food substances affirmed as generally recognized as safe; egg white lysozyme. Federal Register, 63(49), 12421-12426. https://www.federalregister.gov/documents/1998/03/13/98-6571/direct-food-substances-affirmed-as-generally-recognized-as-safe-egg-white-lysozyme

Fernández-León, D.E., Hernández-Uribe, J.P., Campos-Montiel, R.G. y Jiménez-Alvarado, R. (2018). Empaques activos en la industria de los alimentos. Boletín de Ciencias Agropecuarias del ICAP, 4(8). https://doi.org/10.29057/icap.v4i8.3341

Flórez, M., Guerra-Rodríguez, E., Cazón, P. y Vázquez, M. (2022). Chitosan for food packaging: recent advances in active and intelligent films. Food Hydrocolloids, 124, 107328. https://doi.org/10.1016/j.foodhyd.2021.107328

Gomaa, E.Z. (2018). Synergistic antibacterial efficiency of bacteriocin and silver nanoparticles produced by probiotic Lactobacillus paracasei against multidrug resistant bacteria. International Journal of Peptide Research and Therapeutics, 25, 1113-1125. https://doi.org/10.1007/s10989-018-9759-9

Grande, J. (2020). Lab. Bioquímica/Bacteriófagos como agentes de Biocontrol en los alimentos. (TIP).

Gumienna, M. y Górna, B. (2021). Antimicrobial food packaging with biodegradable polymers and bacteriocins. Molecules, 26(12), 3735. https://doi.org/10.3390/molecules26123735

Gyawali, R. y Ibrahim, S.A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047

Heras-Mozos, R., Muriel-Galet, V., López-Carballo, G., Catalá, R., Hernández-Muñoz, P. y Gavara, R. (2019). Development and optimization of antifungal packaging for sliced pan loaf based on garlic as active agent and bread aroma as aroma corrector. International Journal of Food Microbiology, 290, 42-48. https://doi.org/10.1016/j.ijfoodmicro.2018.09.024

Huang, F., Teng, K., Liu, Y., Cao, Y., Wang, T., Ma, C., Zhang, J. y Zhong, J. (2021). Bacteriocins: potential for human health. Oxidative Medicine and Cellular Longevity, 2021(1), 5518825. https://doi.org/10.1155/2021/5518825

Huang, Y., Xiao, D., Burton-Freeman, B.M. y Edirisinghe, I. (2016). Chemical changes of bioactive phytochemicals during thermal processing. En Reference Module in Food Science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.03055-9

Instituto Nacional de las Personas Adultas Mayores. (31 de julio del 2023). Las Enfermedades Transmitidas por Alimentos (ETA) tienen mayor riesgo de contraerlas las personas adultas mayores. Gobierno de México. Recuperado el 2 de abril del 2024 en https://www.gob.mx/inapam/es/articulos/las-enfermedades-transmitidas-por-alimentos-eta-tienen-mayor-riesgo-de-contraerlas-las-personas-adultas-mayores#:~:text=De%20acuerdo%20con%20el%20Sistema,casos%20por%20intoxicaci%C3%B3n%20alimentaria%20bacteriana

Irkin, R. y Esmer, O.K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal of Food Science and Technology, 52(10), 6095-6111. https://doi.org/10.1007/s13197-015-1780-9

International Organization for Standardization. (2015). ISO/TS 80004-2:2015. Nanotechnologies–Vocabulary–Part 2: Nano-objects. https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-2:ed-1:v1:en

Jenssen, H. y Hancock, R.E.W. (2009). Antimicrobial properties of lactoferrin. Biochimie, 91(1), 19-29. https://doi.org/10.1016/j.biochi.2008.05.015

Khorshidian, N., Khanniri, E., Mohammadi, M., Mortazavian, A.M. y Yousefi, M. (2021). Antibacterial activity of pediocin and pediocin-producing bacteria against Listeria monocytogenes in meat products. Frontiers in Microbiology, 12, 709959. https://doi.org/10.3389/fmicb.2021.709959

Kou, S., Peters, L.M. y Mucalo, M.R. (2021). Chitosan: a review of sources and preparation methods. International Journal of Biological Macromolecules, 169, 85-94. https://doi.org/10.1016/j.ijbiomac.2020.12.005

Lü, J.-M., Lin, P.H., Yao, Q. y Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. Journal of Cellular and Molecular Medicine, 14(4), 840-860. https://doi.org/10.1111/j.1582-4934.2009.00897.x

Mahmud, J., Sarmast, E., Shankar, S. y Lacroix, M. (2022). Advantages of nanotechnology developments in active food packaging. Food Research International, 154. https://doi.org/10.1016/j.foodres.2022.111023

Malhotra, B., Keshwani, A. y Kharkwal, H. (2015). Antimicrobial food packaging: potential and pitfalls. Frontiers in Microbiology, 6, 611. https://doi.org/10.3389/fmicb.2015.00611

Mirza, S.K., Asema, U.K. y Kasim, S.S. (2017). To study the harmful effects of food preservatives on human health. Journal of Medicinal Chemistry Drug Discovery, 2(2), 610-616.

Narayanan, K.B., Bhaskar, R. y Han, S.S. (2024). Bacteriophages: natural antimicrobial bioadditives for food preservation in active packaging. International Journal of Biological Macromolecules, 276, 133945. https://doi.org/10.1016/j.ijbiomac.2024.133945

Nazzaro, F., Fratianni, F., Coppola, R. y De Feo, V. (2017). Essential oils and antifungal activity. Pharmaceuticals, 10(4), 86. https://doi.org/10.3390/ph10040086

Niamah, A.K. (2018). Structure, mode of action and application of pediocin natural antimicrobial food preservative: a review. Basrah Journal of Agricultural Sciences, 31(1), 59-69. https://doi.org/10.37077/25200860.2018.76

Niaz, B., Saeed, F., Ahmed, A., Imran, M., Maan, A.A., Khan, M. K. I., Tufail, T., Anjum, F.M., Hussain, S. y Suleria, H.A.R. (2019). Lactoferrin (LF): a natural antimicrobial protein. International Journal of Food Properties, 22(1), 1626-1641. https://doi.org/10.1080/10942912.2019.1666137

Ojeda, G.A., Arias Gorman, A.M. y Sgroppo, S.C. (2019). Nanotecnología y su aplicación en alimentos. Mundo Nano. Revista Interdisciplinaria en Nanociencia y Nanotecnología, 12(23). https://doi.org/10.22201/ceiich.24485691e.2019.23.67747

Pérez-Gago, M.B. y Palou, L. (2016). Antimicrobial packaging for fresh and fresh-cut fruits and vegetables. En S. Pareek (Ed.), Fresh-cut fruits and vegetables. Technology, physiology, and safety (pp. 403-452). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781315370132-13/antimicrobial-packaging-fresh-fresh-cut-fruits-vegetables-mar%C3%ADa-p%C3%A9rez-gago-llu%C3%ADs-palou

Perinelli, D.R., Fagioli, L., Campana, R., Lam, J.K.W., Baffone, W., Palmieri, G.F., Casettari, L. y Bonacucina, G. (2018). Chitosan-based nanosystems and their exploited antimicrobial activity. European Journal of Pharmaceutical Sciences, 117, 8-20. https://doi.org/10.1016/j.ejps.2018.01.046

Pilevar, Z., Hosseini, H., Beikzadeh, S., Khanniri, E. y Alizadeh, A.M. (2018). Application of bacteriocins in meat and meat products: an update. Current Nutrition & Food Science, 16(2), 120-133. https://doi.org/10.2174/1573401314666181001115605

Pisoschi, A.M., Pop, A., Georgescu, C., Turcuş, V., Olah, N.K. y Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935. https://doi.org/10.1016/j.ejmech.2017.11.095

Procuraduría Federal del Consumidor. (16 de junio del 2022). Evita el desperdicio de alimentos. Gobierno de México. Recuperado 2 de abril de 2024, de https://www.gob.mx/profeco/documentos/evita-el-desperdicio-de-alimentos

Quinto, E.J., Caro, I., Villalobos-Delgado, L.H., Mateo, J., De-Mateo-Silleras, B. y Redondo-Del-Río, M.P. (2019). Food safety through natural antimicrobials. Antibiotics, 8(4), 208. https://doi.org/10.3390/antibiotics8040208

Ramos, B., Brandão, T.R.S., Teixeira, P. y Silva, C.L.M. (2020). Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiology, 85, 103282. https://doi.org/10.1016/j.fm.2019.103282

Rodríguez, J.M., Martínez, M.I. y Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 42(2), 91-121. https://doi.org/10.1080/10408690290825475

Sadiq, F.A., Yan, B., Tian, F., Zhao, J., Zhang, H. y Chen, W. (2019). Lactic acid bacteria as antifungal and antimycotoxigenic agents: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1403-1436. https://doi.org/10.1111/1541-4337.12481

Siddiqui, S.A., Khan, S., Mehdizadeh, M., Bahmid, N.A., Adli, D.N., Walker, T.R., Perestrelo, R. y Câmara, J.S. (2023). Phytochemicals and bioactive constituents in food packaging-A systematic review. Heliyon, 9(11), e21196. https://doi.org/10.1016/j.heliyon.2023.e21196

Tsuchiya, H. (2015). Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules, 20(10), 18923-18966. https://doi.org/10.3390/molecules201018923

Vieira, J.N., Gonçalves, C.L., Villarreal, J.P.V., Gonçalves, V.M., Lund, R.G., Freitag, R.A., Silva, A.F. y Nascente, P.S. (2019). Chemical composition of essential oils from the apiaceae family, cytotoxicity, and their antifungal activity in vitro against candida species from oral cavity. Brazilian Journal of Biology, 79(3), 432-437. https://doi.org/10.1590/1519-6984.182206

Wagh, R.V., Priyadarshi, R. y Rhim, J.-W. (2023). Novel bacteriophage-based food packaging: an innovative food safety approach. Coatings, 13(3), 609. https://doi.org/10.3390/coatings13030609

Wang, B., Timilsena, Y.P., Blanch, E. y Adhikari, B. (2019). Lactoferrin: structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580-596. https://doi.org/10.1080/10408398.2017.1381583

Wu, T., Jiang, Q., Wu, D., Hu, Y., Chen, S., Ding, T., Ye, X., Liu, D. y Chen, J. (2019). What is new in lysozyme research and its application in food industry? A review. Food Chemistry, 274, 698-709. https://doi.org/10.1016/j.foodchem.2018.09.017

Wyrwa, J. y Barska, A. (2017). Innovations in the food packaging market: active packaging. European Food Research and Technology, 243, 1681-1692. https://doi.org/10.1007/s00217-017-2878-2

Yildirim, S., Röcker, B., Pettersen, M.K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B. y Coma, V. (2017). Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. https://doi.org/10.1111/1541-4337.12322

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2026 Digital ciencia@uaqro