Resumen
A través del tiempo se han creado diversas técnicas y tecnologías en la industria alimentaria para retrasar la descomposición de los alimentos; entre estas, los empaques buscan proteger el alimento y prolongar su vida útil a partir de los materiales que los componen. Si bien los empaques actuales cubren necesidades básicas de protección, hoy en día existe una gran pérdida económica y alimenticia debido a la rápida descomposición de los alimentos que contienen. Asimismo, ha habido un alza en la demanda por alimentos frescos con menos compuestos sintéticos y por la disminución de los residuos generados. Como respuesta a esta problemática se crearon los empaques activos, capaces de mantener el alimento inocuo por un largo periodo sin requerir la adición de conservadores sintéticos, ya que sus materiales retrasan el proceso de descomposición mediante compuestos de origen natural. Estas moléculas inhiben el desarrollo de microorganismos patógenos humanos transmitidos por alimentos, reduciendo la incidencia de enfermedades causadas por dichos agentes. La tasa de efectividad del empaque depende de su tipo, las moléculas utilizadas y las características del alimento. En ese sentido, la presente revisión explora el efecto antimicrobiano de distintas fuentes naturales implementadas en esta tecnología (antioxidantes, aceites esenciales, antimicrobianos provenientes de origen animal, entre otros), así como su efectividad según el tipo de empaque y el material empleados.
Referencias
Al-Baarri, A.N., Damayanti, N.T., Legowo, A.M., Tekiner, İ.H. y Hayakawa, S. (2019). Enhanced antibacterial activity of lactoperoxidase-thiocyanate-hydrogen peroxide system in reduced-lactose milk whey. International Journal of Food Science, 2019(1). https://doi.org/10.1155/2019/8013402
Aljohani, A.B., Al-Hejin, A.M. y Shori, A.B. (2023). Bacteriocins as promising antimicrobial peptides, definition, classification, and their potential applications in cheeses. Food Science and Technology (Campinas), 43(5). https://doi.org/10.1590/fst.118021
Aloui, H. y Khwaldia, K. (2016). Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1080-1103. https://doi.org/10.1111/1541-4337.12226
Asare, P.T., Zurfluh, K., Greppi, A., Lynch, D., Schwab, C., Stephan, R. y Lacroix, C. (2020). Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat Campylobacter spp. Isolates. Microorganisms, 8(1), 78. https://doi.org/10.3390/microorganisms8010078
Ashfaq, A., Khursheed, N., Fatima, S., Anjum, Z. y Younis, K. (2022). Application of nanotechnology in food packaging: pros and cons. Journal of Agriculture and Food Research, 7, 100270. https://doi.org/10.1016/j.jafr.2022.100270
Azhar, N.S., Zin, N.H.M. y Hamid, T.H.T.A. (2017). Lactococcus Lactis strain A5 producing nisin-like bacteriocin active against gram positive and negative bacteria. Tropical Life Sciences Research, 28(2), 107-118. https://doi.org/10.21315/tlsr2017.28.2.8
Bahrami, A., Delshadi, R., Jafari, S.M. y Williams, L. (2019). Nanoencapsulated nisin: an engineered natural antimicrobial system for the food industry. Trends in Food Science & Technology, 94, 20-31. https://doi.org/10.1016/j.tifs.2019.10.002
Batiha, G.E., Hussein, D.E., Algammal, A.M., George, T.T., Jeandet, P., Al-Snafi, A.E., Tiwari, A., Pamplona Pagnossa, J., Lima, C.M., Thorat, N.D., Zahoor, M., El-Esawi, M., Dey, A., Alghamdi, S., Hetta, H.F. y Cruz-Martins, N. (2021). Application of natural antimicrobials in food preservation: recent views. Food Control, 126, 108066. https://doi.org/10.1016/j.foodcont.2021.108066
Bedoya-Serna, C.M., Dacanal, G.C., Fernandes, A.M. y Pinho, S.C. (2018). Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian Journal of Microbiology, 49(4), 929-935. https://doi.org/10.1016/j.bjm.2018.05.004
Bennett, S., Said, L.B., Lacasse, P., Malouin, F. y Fliss, I. (2021). Susceptibility to nisin, bactofencin, pediocin and reuterin of multidrug resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis causing bovine mastitis. Antibiotics, 10(11), 1418. https://doi.org/10.3390/antibiotics10111418
Caicedo-Perea, C., Solís-Molina, M. y Jiménez-Rosero, H. (2022). Empaques inteligentes: definiciones, tipologías y aplicaciones. Informador Técnico, 86(2), 220-253. https://doi.org/10.23850/22565035.3985
Cañaveral Sanchez, I., Chalarca Vélez, J.R. y Gaviria Arias, D. (2020). Bacteriocinas: visión básica y aplicada. Alimentos, Ciencia e Ingeniería, 27(2), 7-33. https://revistas.uta.edu.ec/index.php/aci/article/view/938
Carpena, M., Nuñez-Estevez, B., Soria-Lopez, A., Garcia-Oliveira, P. y Prieto, M.A. (2021). Essential oils and their application on active packaging systems: a review. Resources, 10(1), 7. https://doi.org/10.3390/resources10010007
Chan, K.T., Song, X., Shen, L., Liu, N., Zhou, X., Cheng, L. y Chen, J. (2023). Nisin and its application in oral diseases. Journal of Functional Foods, 105, 105559. https://doi.org/10.1016/j.jff.2023.105559
Chatzidaki, M.D., Balkiza, F., Gad, E., Alexandraki, V., Avramiotis, S., Georgalaki, M., Papadimitriou, V., Tsakalidou, E., Papadimitriou, K. y Xenakis, A. (2019). Reverse micelles as nano-carriers of nisin against foodborne pathogens. Part II: the case of essential oils. Food Chemistry, 278, 415-423. https://doi.org/10.1016/j.foodchem.2018.11.078
Deshmukh, R.K. y Gaikwad, K.K. (2022). Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Conversion and Biorefinery, 14, 4419-4440. https://doi.org/10.1007/s13399-022-02623-w
Erdogˇrul, Ö. y Şener, H. (2005). The contamination of various fruit and vegetable with Enterobius vermicularis, Ascaris eggs, Entamoeba histolyca cysts and Giardia cysts. Food Control, 16(6), 557-560. https://doi.org/10.1016/j.foodcont.2004.06.016
Food and Drug Administration. (1998). Direct food substances affirmed as generally recognized as safe; egg white lysozyme. Federal Register, 63(49), 12421-12426. https://www.federalregister.gov/documents/1998/03/13/98-6571/direct-food-substances-affirmed-as-generally-recognized-as-safe-egg-white-lysozyme
Fernández-León, D.E., Hernández-Uribe, J.P., Campos-Montiel, R.G. y Jiménez-Alvarado, R. (2018). Empaques activos en la industria de los alimentos. Boletín de Ciencias Agropecuarias del ICAP, 4(8). https://doi.org/10.29057/icap.v4i8.3341
Flórez, M., Guerra-Rodríguez, E., Cazón, P. y Vázquez, M. (2022). Chitosan for food packaging: recent advances in active and intelligent films. Food Hydrocolloids, 124, 107328. https://doi.org/10.1016/j.foodhyd.2021.107328
Gomaa, E.Z. (2018). Synergistic antibacterial efficiency of bacteriocin and silver nanoparticles produced by probiotic Lactobacillus paracasei against multidrug resistant bacteria. International Journal of Peptide Research and Therapeutics, 25, 1113-1125. https://doi.org/10.1007/s10989-018-9759-9
Grande, J. (2020). Lab. Bioquímica/Bacteriófagos como agentes de Biocontrol en los alimentos. (TIP).
Gumienna, M. y Górna, B. (2021). Antimicrobial food packaging with biodegradable polymers and bacteriocins. Molecules, 26(12), 3735. https://doi.org/10.3390/molecules26123735
Gyawali, R. y Ibrahim, S.A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047
Heras-Mozos, R., Muriel-Galet, V., López-Carballo, G., Catalá, R., Hernández-Muñoz, P. y Gavara, R. (2019). Development and optimization of antifungal packaging for sliced pan loaf based on garlic as active agent and bread aroma as aroma corrector. International Journal of Food Microbiology, 290, 42-48. https://doi.org/10.1016/j.ijfoodmicro.2018.09.024
Huang, F., Teng, K., Liu, Y., Cao, Y., Wang, T., Ma, C., Zhang, J. y Zhong, J. (2021). Bacteriocins: potential for human health. Oxidative Medicine and Cellular Longevity, 2021(1), 5518825. https://doi.org/10.1155/2021/5518825
Huang, Y., Xiao, D., Burton-Freeman, B.M. y Edirisinghe, I. (2016). Chemical changes of bioactive phytochemicals during thermal processing. En Reference Module in Food Science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.03055-9
Instituto Nacional de las Personas Adultas Mayores. (31 de julio del 2023). Las Enfermedades Transmitidas por Alimentos (ETA) tienen mayor riesgo de contraerlas las personas adultas mayores. Gobierno de México. Recuperado el 2 de abril del 2024 en https://www.gob.mx/inapam/es/articulos/las-enfermedades-transmitidas-por-alimentos-eta-tienen-mayor-riesgo-de-contraerlas-las-personas-adultas-mayores#:~:text=De%20acuerdo%20con%20el%20Sistema,casos%20por%20intoxicaci%C3%B3n%20alimentaria%20bacteriana
Irkin, R. y Esmer, O.K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal of Food Science and Technology, 52(10), 6095-6111. https://doi.org/10.1007/s13197-015-1780-9
International Organization for Standardization. (2015). ISO/TS 80004-2:2015. Nanotechnologies–Vocabulary–Part 2: Nano-objects. https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-2:ed-1:v1:en
Jenssen, H. y Hancock, R.E.W. (2009). Antimicrobial properties of lactoferrin. Biochimie, 91(1), 19-29. https://doi.org/10.1016/j.biochi.2008.05.015
Khorshidian, N., Khanniri, E., Mohammadi, M., Mortazavian, A.M. y Yousefi, M. (2021). Antibacterial activity of pediocin and pediocin-producing bacteria against Listeria monocytogenes in meat products. Frontiers in Microbiology, 12, 709959. https://doi.org/10.3389/fmicb.2021.709959
Kou, S., Peters, L.M. y Mucalo, M.R. (2021). Chitosan: a review of sources and preparation methods. International Journal of Biological Macromolecules, 169, 85-94. https://doi.org/10.1016/j.ijbiomac.2020.12.005
Lü, J.-M., Lin, P.H., Yao, Q. y Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. Journal of Cellular and Molecular Medicine, 14(4), 840-860. https://doi.org/10.1111/j.1582-4934.2009.00897.x
Mahmud, J., Sarmast, E., Shankar, S. y Lacroix, M. (2022). Advantages of nanotechnology developments in active food packaging. Food Research International, 154. https://doi.org/10.1016/j.foodres.2022.111023
Malhotra, B., Keshwani, A. y Kharkwal, H. (2015). Antimicrobial food packaging: potential and pitfalls. Frontiers in Microbiology, 6, 611. https://doi.org/10.3389/fmicb.2015.00611
Mirza, S.K., Asema, U.K. y Kasim, S.S. (2017). To study the harmful effects of food preservatives on human health. Journal of Medicinal Chemistry Drug Discovery, 2(2), 610-616.
Narayanan, K.B., Bhaskar, R. y Han, S.S. (2024). Bacteriophages: natural antimicrobial bioadditives for food preservation in active packaging. International Journal of Biological Macromolecules, 276, 133945. https://doi.org/10.1016/j.ijbiomac.2024.133945
Nazzaro, F., Fratianni, F., Coppola, R. y De Feo, V. (2017). Essential oils and antifungal activity. Pharmaceuticals, 10(4), 86. https://doi.org/10.3390/ph10040086
Niamah, A.K. (2018). Structure, mode of action and application of pediocin natural antimicrobial food preservative: a review. Basrah Journal of Agricultural Sciences, 31(1), 59-69. https://doi.org/10.37077/25200860.2018.76
Niaz, B., Saeed, F., Ahmed, A., Imran, M., Maan, A.A., Khan, M. K. I., Tufail, T., Anjum, F.M., Hussain, S. y Suleria, H.A.R. (2019). Lactoferrin (LF): a natural antimicrobial protein. International Journal of Food Properties, 22(1), 1626-1641. https://doi.org/10.1080/10942912.2019.1666137
Ojeda, G.A., Arias Gorman, A.M. y Sgroppo, S.C. (2019). Nanotecnología y su aplicación en alimentos. Mundo Nano. Revista Interdisciplinaria en Nanociencia y Nanotecnología, 12(23). https://doi.org/10.22201/ceiich.24485691e.2019.23.67747
Pérez-Gago, M.B. y Palou, L. (2016). Antimicrobial packaging for fresh and fresh-cut fruits and vegetables. En S. Pareek (Ed.), Fresh-cut fruits and vegetables. Technology, physiology, and safety (pp. 403-452). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781315370132-13/antimicrobial-packaging-fresh-fresh-cut-fruits-vegetables-mar%C3%ADa-p%C3%A9rez-gago-llu%C3%ADs-palou
Perinelli, D.R., Fagioli, L., Campana, R., Lam, J.K.W., Baffone, W., Palmieri, G.F., Casettari, L. y Bonacucina, G. (2018). Chitosan-based nanosystems and their exploited antimicrobial activity. European Journal of Pharmaceutical Sciences, 117, 8-20. https://doi.org/10.1016/j.ejps.2018.01.046
Pilevar, Z., Hosseini, H., Beikzadeh, S., Khanniri, E. y Alizadeh, A.M. (2018). Application of bacteriocins in meat and meat products: an update. Current Nutrition & Food Science, 16(2), 120-133. https://doi.org/10.2174/1573401314666181001115605
Pisoschi, A.M., Pop, A., Georgescu, C., Turcuş, V., Olah, N.K. y Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935. https://doi.org/10.1016/j.ejmech.2017.11.095
Procuraduría Federal del Consumidor. (16 de junio del 2022). Evita el desperdicio de alimentos. Gobierno de México. Recuperado 2 de abril de 2024, de https://www.gob.mx/profeco/documentos/evita-el-desperdicio-de-alimentos
Quinto, E.J., Caro, I., Villalobos-Delgado, L.H., Mateo, J., De-Mateo-Silleras, B. y Redondo-Del-Río, M.P. (2019). Food safety through natural antimicrobials. Antibiotics, 8(4), 208. https://doi.org/10.3390/antibiotics8040208
Ramos, B., Brandão, T.R.S., Teixeira, P. y Silva, C.L.M. (2020). Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiology, 85, 103282. https://doi.org/10.1016/j.fm.2019.103282
Rodríguez, J.M., Martínez, M.I. y Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 42(2), 91-121. https://doi.org/10.1080/10408690290825475
Sadiq, F.A., Yan, B., Tian, F., Zhao, J., Zhang, H. y Chen, W. (2019). Lactic acid bacteria as antifungal and antimycotoxigenic agents: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1403-1436. https://doi.org/10.1111/1541-4337.12481
Siddiqui, S.A., Khan, S., Mehdizadeh, M., Bahmid, N.A., Adli, D.N., Walker, T.R., Perestrelo, R. y Câmara, J.S. (2023). Phytochemicals and bioactive constituents in food packaging-A systematic review. Heliyon, 9(11), e21196. https://doi.org/10.1016/j.heliyon.2023.e21196
Tsuchiya, H. (2015). Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules, 20(10), 18923-18966. https://doi.org/10.3390/molecules201018923
Vieira, J.N., Gonçalves, C.L., Villarreal, J.P.V., Gonçalves, V.M., Lund, R.G., Freitag, R.A., Silva, A.F. y Nascente, P.S. (2019). Chemical composition of essential oils from the apiaceae family, cytotoxicity, and their antifungal activity in vitro against candida species from oral cavity. Brazilian Journal of Biology, 79(3), 432-437. https://doi.org/10.1590/1519-6984.182206
Wagh, R.V., Priyadarshi, R. y Rhim, J.-W. (2023). Novel bacteriophage-based food packaging: an innovative food safety approach. Coatings, 13(3), 609. https://doi.org/10.3390/coatings13030609
Wang, B., Timilsena, Y.P., Blanch, E. y Adhikari, B. (2019). Lactoferrin: structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580-596. https://doi.org/10.1080/10408398.2017.1381583
Wu, T., Jiang, Q., Wu, D., Hu, Y., Chen, S., Ding, T., Ye, X., Liu, D. y Chen, J. (2019). What is new in lysozyme research and its application in food industry? A review. Food Chemistry, 274, 698-709. https://doi.org/10.1016/j.foodchem.2018.09.017
Wyrwa, J. y Barska, A. (2017). Innovations in the food packaging market: active packaging. European Food Research and Technology, 243, 1681-1692. https://doi.org/10.1007/s00217-017-2878-2
Yildirim, S., Röcker, B., Pettersen, M.K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B. y Coma, V. (2017). Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. https://doi.org/10.1111/1541-4337.12322

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2026 Digital ciencia@uaqro

