Generalizaciones de las funciones inframonogénicas en el análisis de Clifford
PDF

Palabras clave

análisis de clifford
conjuntos estructurales
funciones inframogénicas
operador de dirac

Cómo citar

Generalizaciones de las funciones inframonogénicas en el análisis de Clifford. (2026). Digital ciencia@uaqro, 19(1), 105-137. https://doi.org/10.61820/dcuqa.2395-8847.1735

Resumen

El análisis de Clifford se enfoca en las llamadas funciones monogénicas, reconocidas como generalizaciones naturales de las funciones holomorfas del plano complejo. Debido a la no conmutatividad del producto en álgebras de Clifford, surgen las funciones inframonogénicas como versión no conmutativa de las funciones armónicas. La construcción de operadores de Dirac con bases ortonormales arbitrarias de ℝᵐ posibilita el surgimiento de una nueva subclase de funciones biarmónicas que generalizan a las funciones inframonogénicas. En este trabajo se tratará la fórmula integral de Cauchy y un problema de salto para este tipo de funciones, así como la conexión con el sistema de Lamé-Navier. Al finalizar se mostrarán problemas de frontera bien planteados y descomposiciones de Fischer para el espacio de polinomios ℝᵐ[x].

PDF

Referencias

Abreu Blaya, R., Bory Reyes, J., Guzmán Adán, A. y Kähler, U. (2015). On some structural sets and a quaternionic (φ, ψ)–hyperholomorphic function theory. Mathematische Nachrichten, 288 (13), 1451-1475. https://doi.org/10.1002/mana.201300072

Abreu Blaya, R., Bory Reyes, J., Guzmán, A. y Kähler, U. (2016). On the Π-operator in Clifford Analysis. Journal of Mathematical Analysis and Applications, 434(2), 1138-1159. https://doi.org/10.1016/j.jmaa.2015.09.038.

Abreu Blaya, R., Bory Reyes, J., Guzmán, A y Kähler, U. (2017). On the φ-Hiperderivative of the ψ-Cauchy-Type Integral in Clifford Analysis. Comput. Methods Funct. Theory, 17, 101-119, https://doi.org/10.1007/s40315-016-0172-0.

Ahlfors, L.V. (2006). Lectures on quasiconformal mappings. University Lectures Series, 38. American Mathematical Society. https://bookstore.ams.org/view?ProductCode=ULECT/38

Alfonso Santiesteban, D. (2024).¯∂-problem for a second-order elliptic system in Clifford analysis. Mathematical Methods in the Applied Sciences, 47(12), 9718-9728. https://doi.org/10.1002/mma.10090

Alfonso Santiesteban, D., Abreu Blaya, R. y Árciga Alejandre, M. P. (2022a). On (ϕ,ψ)-inframonogenic function in Clifford Analysis. Bulletin of the Brazilian Mathematical Society, New Series, 53, 605-621. https://doi.org/10.1007/s00574-021-00273-6.

Alfonso Santiesteban, D., Abreu Blaya, R. y Árciga Alejandre, M. P. (2022b). On a generalized Lamé-Navier system in ℝ³. Mathematica Slovaca, 72(6), 1527-1540, https://doi.org/10.1515/ms-2022-0104.

Alfonso Santiesteban, D., Abreu Blaya, R. y Árciga Alejandre, M.P. (2023a). Buscando estructuras en las soluciones de un sistema generalizado de Lamé-Navier. Publicaciones e Investigación, 17(1). https://doi.org/10.22490/25394088.5972

Alfonso Santiesteban, D., Abreu Blaya, R., y Bory Reyes, J. (2023b). Boundary value problems for a second-order elliptic partial differential equation system in Euclidean space. Mathematical Methods in the Applied Sciences, 46(14), 15784-15798. https://doi.org/10.1002/mma.9426.

Alfonso Santiesteban, D., Abreu Blaya, R., Peña Pérez, Y., y Sigarreta Almira, J.M. (2024). Fractional Fischer decompositions by inframonogenic functions. Journal of Mathematical Analysis and Applications, 539(1), 128468. https://doi.org/10.1016/j.jmaa.2024.128468.

Alfonso Santiesteban, D., Abreu Blaya, R., Peña Pérez, Y. y Sigarreta Almira, J.M. (2025). Descomposición de Fischer por funciones inframonogénicas generalizadas. Tlamati Sabiduria, 21, 23-29. https://tlamati.uagro.mx/images/Archivos/Tlamati_Vol_21_2025/Alonso-Santiesteban_et_al__2025.pdf

Bañuelos, R. y Janakiraman, P. (2008). L^p-bounds for the Beurling-Ahlfors transform. Transactions of the American Mathematical Society, 360(7), 3603-3612. https://www.ams.org/journals/tran/2008-360-07/S0002-9947-08-04537-6/S0002-9947-08-04537-6.pdf

Brackx, F., Delanghe, R. y Sommen, F. (1982). Clifford analysis. Research Notes in Mathematics, 76. Pitman Advanced Publishing Program.

Bory Reyes, J., De Shepper, H., Guzmán, A. y Sommen, F. (2016). Higher order Borel-Pompeiu representations in Clifford analysis. Mathematical Methods in the Applied Sciences, 39 (16), 4787-4796. https://doi.org/10.1002/mma.3798

Calderón, A.P. y Zygmund, A. (1954). Singular integrals and periodic functions. Studia Mathematica, 14(2), 249-271. https://link.springer.com/chapter/10.1007/978-94-009-1045-4_5

Delanghe, R. (2001). Clifford analysis: history and perspective. Computational Methods and Function Theory, 1,107-153. https://doi.org/10.1007/BF03320981

Delanghe, R., Krausshar, R.S. y Malonek, H.R. (2001). Differentiability of functions with values in some real associative algebras: approaches to an old problem. Bulletin de la Societe Royale des Sciences de Liege, 70 (4-6), 231-249.

Donaldson, S.K. y Sullivan, D.P. (1989). Quasiconformal 4-manifolds. Acta Mathematica, 163, 181-252.https://link.springer.com/article/10.1007/BF02392736

Dzhuraev, A. (1992). Methods of singular integral equations. Pitman Monographs and Surveys in Pure and Applied Mathematics, 60, Longman Scientific and Technical/John Wiley and Sons, Inc.

Gakhov, F. D. (1990). Boundary value problems. Courier Corporation. https://books.google.com.mx/books/about/Boundary_Value_Problems.html?id=9G7sfwTDv8QC&redir_esc=y.

Gibbs, J. W. y Wilson, E. B. (1947). Vector Analysis. Yale University Press.

Gürlebeck, K. (1998). On some classes of Pi-operators. En J. Ryan y D. Struppa (Eds.), Dirac operators in analysis (pp.41-57). Pitman Research Notes in Mathematics, 394. Pitman Longman.

Gürlebeck, K., Kähler, U. y Shapiro, M. (1999). On the Π-operator in hyperholomorphic function theory. Advances in Applied Clifford Algebras, 9(1), 23-40. https://doi.org/10.1007/BF03041935.

Gürlebeck, K. y Nguyen, H. M. (2014). On ψ-hyperholomorphic functions and a decomposition of harmonics. En S. Bernstein, U. Kähler, I. Sabadini y F. Sommen (Eds.), Hypercomplex analysis: new perspectives and applications (pp. 181-189). https://doi.org/10.1007/978-3-319-08771-9_12.

Gürlebeck, K. y Nguyen, H. M. (2015). Ψ-Hyperholomorphic functions and an application to elasticity problems. AIP Conference Proceedings, 1648 (1), 440005.

Gürlebeck, K. y Sprössig, W. (1990). Quaternionic analysis and elliptic boundary value problems. Birkhäuser.

Harrison, J., y Norton, A. (1992). The Gauss-Green theorem for fractal boundaries. Duke Mathematical Journal, 67(3), 575-588. https://doi.org/10.1215/S0012-7094-92-06724-X.

Kähler, U. y Vieira, N. (2014). Fractional Clifford Analysis. En S. Bernstein, U. Kähler, I. Sabadini y F. Sommen (Eds.) Hypercomplex analysis: new perspectives and applications. (pp. 191-201). Birkhäuser. https://doi.org/10.1007/978-3-319-08771-9_13.

Kats, B.A. (1983). The Riemann problem on a closed Jordan curve. Sovremennaya Mathematika, 27(4), 83-98.

Koriyama, H., Mae, H. y Nõno, K. (2011). Hyperholomorphic functions and holomorphic functions in quaternionic analysis. Bulletin of Fukuoka University of Education, parte III 60, 1-9.

Krausshar, R.S. y Malonek, H.R. (2001). A characterization of conformal mappings in ℝ⁴ by a formal differentiability condition. Bulletin de la Societe Royale des Sciences de Liege. 70(1), 35-49.

Lamé, G. (1837). Memoire Sur les surfaces isothermes dans les corps homogènes en équilibre de temprature. Journal de Mathématiques Pures et Appliquées, serie 1, tomo 2, 147–188.

Liu, L.W. y Hong, H. -K. (2018). Clifford algebra valued boundary integral equations for three-dimensional elasticity. Applied Mathematical Modelling, 54, 246-267. https://doi.org/10.1016/j.apm.2017.09.031.

Loomis, L.H. y Sternberg, S. (1990). Advanced calculus. Jones and Bartlett Publishers.https://people.math.harvard.edu/~shlomo/docs/Advanced_Calculus.pdf

Malonek, H. R, Peña Peña, D. y Sommen, F. (2010). Fischer decomposition by inframonogenic functions. Cubo. A Mathematical Journal, 12(2), 189–197.

Malonek, H., Peña Peña, D. y Sommen, F. (2011). A Cauchy-Kowalevski theorem for inframonogenic functions. Mathematical Journal of Okayama University, 53, 167–172.

Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Prentice-Hall, Inc.

Marsden, J.E. y Hughes, T. (1983). Mathematical foundations of elasticity. Dover Publications, Inc.

Mitelman, I. M. y Shapiro, M. V. (1995). Differentiation of the Martinelli-Bochner integrals and notion of hyperderivability. Mathematische Nachrichten, 172, 211–238. https://doi.org/10.1002/mana.19951720116.

Moreno García, A., Moreno García, T. y Abreu Blaya, R. (2022). Comparing harmonic and inframonogenic functions in Clifford analysis. Mediterranean Journal of Mathematics, 19(33). https://doi.org/10.1007/s00009-021-01957-5

Moreno García, A., Moreno García, T., Abreu Blaya, R. y Bory Reyes, J. (2017). A Cauchy integral formula for inframonogenic functions in Clifford analysis. Advances in Applied Clifford Algebras, 27, 1147-1159. https://doi.org/10.1007/s00006-016-0745-z.

Moreno García, A., Moreno García, T., Abreu Blaya, R. y Bory Reyes, J. (2018). Inframonogenic functions and their applications in 3-dimensional elasticity theory. Mathematical Methods in the Applied Sciences, 41(10), 3622-3631. https://doi.org/10.1002/mma.4850.

Moreno García, A., Moreno García, T., Abreu Blaya, R. y Bory Reyes, J. (2020). Decomposition of inframonogenic functions with applications in elasticity theory. Mathematical Methods in the Applied Sciences, 43(4), 1915-1924. https://doi.org/10.1002/mma.6015.

Muskhelishvili, N.I. (1953). Some basic problems of the mathematical theory of elasticity. Groningen.

Nguyen, H. M. (2015). Ψ-hyperholomorphic function theory in ℝ³: geometric mapping properties and applications. [Tesis de doctorado]. Bauhaus-Universitat Weimar.

Nõno, K. (1983). Hyperholomorphic functions of a quaternion variable, Bulletin of Fukuoka University of Education, parte III, 32, 21-37.

Nõno, K. (1986). On the quaternion linearization of Laplacian ∆. Bulletin of Fukuoka University of Education, parte III, 35, 510.

Nõno, K. e Inenaga, Y. (1987). On the Clifford linearization of Laplacian, Journal of the Indian Institute Sciences, 67(5-6), 203-208.

Shapiro, M. V. (1988). On some boundary-value problems for functions with values in Clifford algebra. Matematički Vesnik, 40(103), 321-326. http://eudml.org/doc/259807

Shapiro, M. V. y Vasilevski, N. L. (1995). Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ-hyperholomorphic function theory. Complex Variables, Theory and Application: An International Journal, 27(1), 17-46. https://doi.org/10.1080/17476939508814803

Serrano Ricardo, J.L., Bory Reyes, J., y Abreu Blaya, R. (2021). Singular integral operators and a ∂-problem for (ϕ,ψ)-harmonic functions. Analysis and Mathematical Physics, 11(155). https://doi.org/10.1007/s13324- 021- 00590-5.

Sokolnikoff, I.S. (1958). Mathematical theory of elasticity. McGraw-Hill.

Whitney, H. (1934). Analytic extensions of differentiable functions defined in closed sets. Transactions of the American Mathematical Society, 36(1), 63-89.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2026 Digital ciencia@uaqro