Abstract
Clifford analysis focuses in the so-called monogenic functions, which are recognized as natural generalizations of the holomorphic functions of the complex plane. Due to the non-commutativity of the product in Clifford algebras, the inframonogenic functions arise as a non-commutative version of the harmonic ones. The construction of Dirac operators with arbitrary orthonormal bases of makes possible the emergence of a new subclass of biharmonic functions that generalize to inframonogenic functions. In this work, a Cauchy integral formula and a jump problem for this type of functions will be discussed, as well as the connection with the Lamé-Navier system. At the end, well-posed boundary problems and Fischer decompositions for the polynomial space will be shown.
References
Abreu Blaya, R., Bory Reyes, J., Guzmán Adán, A. y Kähler, U. (2015). On some structural sets and a quaternionic (φ, ψ)–hyperholomorphic function theory. Mathematische Nachrichten, 288 (13), 1451-1475. https://doi.org/10.1002/mana.201300072
Abreu Blaya, R., Bory Reyes, J., Guzmán, A. y Kähler, U. (2016). On the Π-operator in Clifford Analysis. Journal of Mathematical Analysis and Applications, 434(2), 1138-1159. https://doi.org/10.1016/j.jmaa.2015.09.038.
Abreu Blaya, R., Bory Reyes, J., Guzmán, A y Kähler, U. (2017). On the φ-Hiperderivative of the ψ-Cauchy-Type Integral in Clifford Analysis. Comput. Methods Funct. Theory, 17, 101-119, https://doi.org/10.1007/s40315-016-0172-0.
Ahlfors, L.V. (2006). Lectures on quasiconformal mappings. University Lectures Series, 38. American Mathematical Society. https://bookstore.ams.org/view?ProductCode=ULECT/38
Alfonso Santiesteban, D. (2024).¯∂-problem for a second-order elliptic system in Clifford analysis. Mathematical Methods in the Applied Sciences, 47(12), 9718-9728. https://doi.org/10.1002/mma.10090
Alfonso Santiesteban, D., Abreu Blaya, R. y Árciga Alejandre, M. P. (2022a). On (ϕ,ψ)-inframonogenic function in Clifford Analysis. Bulletin of the Brazilian Mathematical Society, New Series, 53, 605-621. https://doi.org/10.1007/s00574-021-00273-6.
Alfonso Santiesteban, D., Abreu Blaya, R. y Árciga Alejandre, M. P. (2022b). On a generalized Lamé-Navier system in ℝ³. Mathematica Slovaca, 72(6), 1527-1540, https://doi.org/10.1515/ms-2022-0104.
Alfonso Santiesteban, D., Abreu Blaya, R. y Árciga Alejandre, M.P. (2023a). Buscando estructuras en las soluciones de un sistema generalizado de Lamé-Navier. Publicaciones e Investigación, 17(1). https://doi.org/10.22490/25394088.5972
Alfonso Santiesteban, D., Abreu Blaya, R., y Bory Reyes, J. (2023b). Boundary value problems for a second-order elliptic partial differential equation system in Euclidean space. Mathematical Methods in the Applied Sciences, 46(14), 15784-15798. https://doi.org/10.1002/mma.9426.
Alfonso Santiesteban, D., Abreu Blaya, R., Peña Pérez, Y., y Sigarreta Almira, J.M. (2024). Fractional Fischer decompositions by inframonogenic functions. Journal of Mathematical Analysis and Applications, 539(1), 128468. https://doi.org/10.1016/j.jmaa.2024.128468.
Alfonso Santiesteban, D., Abreu Blaya, R., Peña Pérez, Y. y Sigarreta Almira, J.M. (2025). Descomposición de Fischer por funciones inframonogénicas generalizadas. Tlamati Sabiduria, 21, 23-29. https://tlamati.uagro.mx/images/Archivos/Tlamati_Vol_21_2025/Alonso-Santiesteban_et_al__2025.pdf
Bañuelos, R. y Janakiraman, P. (2008). L^p-bounds for the Beurling-Ahlfors transform. Transactions of the American Mathematical Society, 360(7), 3603-3612. https://www.ams.org/journals/tran/2008-360-07/S0002-9947-08-04537-6/S0002-9947-08-04537-6.pdf
Brackx, F., Delanghe, R. y Sommen, F. (1982). Clifford analysis. Research Notes in Mathematics, 76. Pitman Advanced Publishing Program.
Bory Reyes, J., De Shepper, H., Guzmán, A. y Sommen, F. (2016). Higher order Borel-Pompeiu representations in Clifford analysis. Mathematical Methods in the Applied Sciences, 39 (16), 4787-4796. https://doi.org/10.1002/mma.3798
Calderón, A.P. y Zygmund, A. (1954). Singular integrals and periodic functions. Studia Mathematica, 14(2), 249-271. https://link.springer.com/chapter/10.1007/978-94-009-1045-4_5
Delanghe, R. (2001). Clifford analysis: history and perspective. Computational Methods and Function Theory, 1,107-153. https://doi.org/10.1007/BF03320981
Delanghe, R., Krausshar, R.S. y Malonek, H.R. (2001). Differentiability of functions with values in some real associative algebras: approaches to an old problem. Bulletin de la Societe Royale des Sciences de Liege, 70 (4-6), 231-249.
Donaldson, S.K. y Sullivan, D.P. (1989). Quasiconformal 4-manifolds. Acta Mathematica, 163, 181-252.https://link.springer.com/article/10.1007/BF02392736
Dzhuraev, A. (1992). Methods of singular integral equations. Pitman Monographs and Surveys in Pure and Applied Mathematics, 60, Longman Scientific and Technical/John Wiley and Sons, Inc.
Gakhov, F. D. (1990). Boundary value problems. Courier Corporation. https://books.google.com.mx/books/about/Boundary_Value_Problems.html?id=9G7sfwTDv8QC&redir_esc=y.
Gibbs, J. W. y Wilson, E. B. (1947). Vector Analysis. Yale University Press.
Gürlebeck, K. (1998). On some classes of Pi-operators. En J. Ryan y D. Struppa (Eds.), Dirac operators in analysis (pp.41-57). Pitman Research Notes in Mathematics, 394. Pitman Longman.
Gürlebeck, K., Kähler, U. y Shapiro, M. (1999). On the Π-operator in hyperholomorphic function theory. Advances in Applied Clifford Algebras, 9(1), 23-40. https://doi.org/10.1007/BF03041935.
Gürlebeck, K. y Nguyen, H. M. (2014). On ψ-hyperholomorphic functions and a decomposition of harmonics. En S. Bernstein, U. Kähler, I. Sabadini y F. Sommen (Eds.), Hypercomplex analysis: new perspectives and applications (pp. 181-189). https://doi.org/10.1007/978-3-319-08771-9_12.
Gürlebeck, K. y Nguyen, H. M. (2015). Ψ-Hyperholomorphic functions and an application to elasticity problems. AIP Conference Proceedings, 1648 (1), 440005.
Gürlebeck, K. y Sprössig, W. (1990). Quaternionic analysis and elliptic boundary value problems. Birkhäuser.
Harrison, J., y Norton, A. (1992). The Gauss-Green theorem for fractal boundaries. Duke Mathematical Journal, 67(3), 575-588. https://doi.org/10.1215/S0012-7094-92-06724-X.
Kähler, U. y Vieira, N. (2014). Fractional Clifford Analysis. En S. Bernstein, U. Kähler, I. Sabadini y F. Sommen (Eds.) Hypercomplex analysis: new perspectives and applications. (pp. 191-201). Birkhäuser. https://doi.org/10.1007/978-3-319-08771-9_13.
Kats, B.A. (1983). The Riemann problem on a closed Jordan curve. Sovremennaya Mathematika, 27(4), 83-98.
Koriyama, H., Mae, H. y Nõno, K. (2011). Hyperholomorphic functions and holomorphic functions in quaternionic analysis. Bulletin of Fukuoka University of Education, parte III 60, 1-9.
Krausshar, R.S. y Malonek, H.R. (2001). A characterization of conformal mappings in ℝ⁴ by a formal differentiability condition. Bulletin de la Societe Royale des Sciences de Liege. 70(1), 35-49.
Lamé, G. (1837). Memoire Sur les surfaces isothermes dans les corps homogènes en équilibre de temprature. Journal de Mathématiques Pures et Appliquées, serie 1, tomo 2, 147–188.
Liu, L.W. y Hong, H. -K. (2018). Clifford algebra valued boundary integral equations for three-dimensional elasticity. Applied Mathematical Modelling, 54, 246-267. https://doi.org/10.1016/j.apm.2017.09.031.
Loomis, L.H. y Sternberg, S. (1990). Advanced calculus. Jones and Bartlett Publishers.https://people.math.harvard.edu/~shlomo/docs/Advanced_Calculus.pdf
Malonek, H. R, Peña Peña, D. y Sommen, F. (2010). Fischer decomposition by inframonogenic functions. Cubo. A Mathematical Journal, 12(2), 189–197.
Malonek, H., Peña Peña, D. y Sommen, F. (2011). A Cauchy-Kowalevski theorem for inframonogenic functions. Mathematical Journal of Okayama University, 53, 167–172.
Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Prentice-Hall, Inc.
Marsden, J.E. y Hughes, T. (1983). Mathematical foundations of elasticity. Dover Publications, Inc.
Mitelman, I. M. y Shapiro, M. V. (1995). Differentiation of the Martinelli-Bochner integrals and notion of hyperderivability. Mathematische Nachrichten, 172, 211–238. https://doi.org/10.1002/mana.19951720116.
Moreno García, A., Moreno García, T. y Abreu Blaya, R. (2022). Comparing harmonic and inframonogenic functions in Clifford analysis. Mediterranean Journal of Mathematics, 19(33). https://doi.org/10.1007/s00009-021-01957-5
Moreno García, A., Moreno García, T., Abreu Blaya, R. y Bory Reyes, J. (2017). A Cauchy integral formula for inframonogenic functions in Clifford analysis. Advances in Applied Clifford Algebras, 27, 1147-1159. https://doi.org/10.1007/s00006-016-0745-z.
Moreno García, A., Moreno García, T., Abreu Blaya, R. y Bory Reyes, J. (2018). Inframonogenic functions and their applications in 3-dimensional elasticity theory. Mathematical Methods in the Applied Sciences, 41(10), 3622-3631. https://doi.org/10.1002/mma.4850.
Moreno García, A., Moreno García, T., Abreu Blaya, R. y Bory Reyes, J. (2020). Decomposition of inframonogenic functions with applications in elasticity theory. Mathematical Methods in the Applied Sciences, 43(4), 1915-1924. https://doi.org/10.1002/mma.6015.
Muskhelishvili, N.I. (1953). Some basic problems of the mathematical theory of elasticity. Groningen.
Nguyen, H. M. (2015). Ψ-hyperholomorphic function theory in ℝ³: geometric mapping properties and applications. [Tesis de doctorado]. Bauhaus-Universitat Weimar.
Nõno, K. (1983). Hyperholomorphic functions of a quaternion variable, Bulletin of Fukuoka University of Education, parte III, 32, 21-37.
Nõno, K. (1986). On the quaternion linearization of Laplacian ∆. Bulletin of Fukuoka University of Education, parte III, 35, 510.
Nõno, K. e Inenaga, Y. (1987). On the Clifford linearization of Laplacian, Journal of the Indian Institute Sciences, 67(5-6), 203-208.
Shapiro, M. V. (1988). On some boundary-value problems for functions with values in Clifford algebra. Matematički Vesnik, 40(103), 321-326. http://eudml.org/doc/259807
Shapiro, M. V. y Vasilevski, N. L. (1995). Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ-hyperholomorphic function theory. Complex Variables, Theory and Application: An International Journal, 27(1), 17-46. https://doi.org/10.1080/17476939508814803
Serrano Ricardo, J.L., Bory Reyes, J., y Abreu Blaya, R. (2021). Singular integral operators and a ∂-problem for (ϕ,ψ)-harmonic functions. Analysis and Mathematical Physics, 11(155). https://doi.org/10.1007/s13324- 021- 00590-5.
Sokolnikoff, I.S. (1958). Mathematical theory of elasticity. McGraw-Hill.
Whitney, H. (1934). Analytic extensions of differentiable functions defined in closed sets. Transactions of the American Mathematical Society, 36(1), 63-89.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2026 Digital ciencia@uaqro

