Obtaining pressure coefficients in tall buildings using computational fluid dynamics (CFD)
PDF (Spanish)

Keywords

ansys fluent
cfd
experimental studies
pressure coefficients
terrain roughness
wind effects

How to Cite

Obtaining pressure coefficients in tall buildings using computational fluid dynamics (CFD). (2026). Digital ciencia@uaqro, 19(1), 88-104. https://doi.org/10.61820/dcuqa.2395-8847.1973

Abstract

Computational fluid dynamics (CFD) is a useful tool that is currently integrated into the industry at large. It is used for maintaining, designing, operating, and analyzing equipment or structures in contact with fluids, such as wind impacting tall buildings. Additionally, it encourages engineering innovation through simulators that help studying flow behavior. This work was conducted to assess the accuracy of CFD simulations compared to experimental studies, such as wind tunnel tests and full-scale studies. Based on data from a study by Kikuchi et al. (2024), where wind pressure samples were taken from the surfaces of a tall building, a model was created using CFD simulations, and the results were contrasted with the experimental data. The findings show that polyhexacore meshing reduces computational costs and attains 92% accuracy relative to experimental studies, which signals its efficiency in wind assessments in buildings.

PDF (Spanish)

References

Ansys. (2024). 4. Turbulencia. Ansys Fluent R2 2024. https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/corp/v242/en/flu_th/flu_th_sec_turb_kw_sst.html

Baghaei Daemei, A., Khotbehsara, E.M., Nobarani, E.M. y Bahrami, P. (2019). Study on wind aerodynamic and flow characteristics of triangular-shaped tall buildings and CFD simulation in order to assess drag coefficient. Ain Shams Engineering Journal, 10(3), 541-548. https://doi.org/10.1016/j.asej.2018.08.008

Cruz Gavilán, Y., Valdés Hernández, P.A., Laffita Leyva, A., Gómez Águila, M.V. y Chuairey, C.M. (2020). Computational fluid dynamics: review and analysis of applications in engineering. Revista Ciencias Técnicas Agropecuarias, 29(4).

Fatchurrohman, N. y Chia, S.T. (2017). Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach. IOP Conference Series: Materials Science and Engineering, 257. https://doi.org/10.1088/1757-899X/257/1/012060

Fernández Oro, J.M. (2012). Técnicas numéricas en ingeniería de fluidos: Introducción a la dinámica de fluidos computacional (CFD) por el método de volúmenes finitos. Editorial Reverté.

Guevara Díaz, J.M. (2013). Cuantificación del perfil del viento hasta 100 m de altura desde la superficie y su incidencia en la climatología eólica. Terra Nueva Etapa, 29(46), 81-101.

Haan F.L., Wang J., Sterling M. y Kopp G.A. (2024). Experimentally estimating wind load coefficients for tornadoes – An alternative perspective. Journal of Wind Engineering and Industrial Aerodynamics, 251(105811). https://doi.org/10.1016/j.jweia.2024.105811

Huang S., Li Q.S. y Xu, S. (2007). Numerical evaluation of wind effects on a tall steel building by CFD. Journal of Constructional Steel Research, 63(5), 612-627. https://doi.org/10.1016/j.asej.2018.08.008

Hubova, O., Macak, M., Konecna, L. y Ciglan, G. (2017). External pressure coefficients on the atypical high-rise building – computing simulation and measurements in wind tunnel. Procedia Engineerin, 190, 488-495. https://doi.org/10.1016/j.proeng.2017.05.368

Ishida, Y., Yoshida, A., Yamane, Y. y Akashi M. (2024). Impact of a single high-rise building on the wind pressure acting on the surrounding low-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 250. https://doi.org/10.1016/j.jweia.2024.105742

Khalil, I. y Lakkis, I. (2023). Computational fluid dynamics: an introduction to modeling and applications (1st Edition). McGrawHill. https://books.google.com.mx/books/about/Computational_Fluid_Dynamics_An_Introduc.htmlid=eMCqEAAAQBAJ&redir_esc=y

Kikuchi, T., Ohtake, K., Takahashi, Y., Watanabe, H., Hidari, K., Tanabe, S. y Nobe, T. (2024). Comparison of wind pressure coefficients between wind tunnel experiments and full-scale measurements using operational data from an urban high-rise building. Building and Environment, 252(111244). https://doi.org/10.1016/j.buildenv.2024.111244

Montazeri, H. y Blocken, B. (2013). CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis. Building and Environment, 60, 137-149. https://doi.org/10.1016/j.buildenv.2012.11.012

Samaniego, G.F., Guerrero, B. y Antamba, J.F. (2021). Análisis del diseño aerodinámico de un alerón preparado para competencia utilizando simulaciones numéricas de dinámica de fluidos computacional (DFC). Información tecnológica, 32(2), 19-28.

Versteeg, H.K. y Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method (2nd Edition). Pearson Education Limited.

White, F.M. (2010). Mecánica de fluidos. Mcgraw-Hill.

Wijesooriya, K., Mohotti, D., Lee, C.-K. y Mendis, P. (2023). A technical review of computational fluid dynamics (CFD) applications on wind design of tall buildings and structures: past, present and future. Journal of Building Engineering, 74(106828). https://doi.org/10.1016/j.jobe.2023.106828

Xamán. J. y Gijón-Rivera, M. (2016). Dinámica de fluidos computacional para ingenieros. Palibrio.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2026 Digital ciencia@uaqro