Co-producción de bioetanol y bioproductos en procesos intensificados: hacia la factibilidad económica de la bioindustria
PDF

Palabras clave

ácido láctico
biorefinería
furfural
intensificaci´ón de procesos

Cómo citar

Co-producción de bioetanol y bioproductos en procesos intensificados: hacia la factibilidad económica de la bioindustria. (2025). Digital Ciencia@UAQRO, 18(1), 35-54. https://doi.org/10.61820/dcuaq.v18i1.1399

Resumen

Los biocombustibles derivados de residuos de biomasa lignocelulósica
presentan una alternativa sostenible al permitir la reutilización de  desechos y la sustitución de combustibles fósiles. No obstante, la  rentabilidad de la producción de biocombustibles sigue siendo limitada, lo que ha impulsado la adopción de un enfoque de producción simultánea de otros bioproductos mediante esquemas de biorrefinería. Entre los biocombustibles, el bioetanol se destaca por su capacidad para sustituir a la gasolina en ciertos porcentajes. En cuanto a los bioproductos de alto valor agregado, se puede mencionar al furfural y el ácido láctico. A pesar de estas opciones, su viabilidad puede verse comprometida si no se  establecen esquemas competitivos económicamente frente a las fuentes fósiles. En este contexto, la intensificación de procesos desempeña un papel crucial, ya que podría contribuir a desarrollar procesos más compactos y con menor consumo de energía. Este estudio realiza un análisis de las propuestas existentes en los procesos de conversión de
biomasa a bioetanol, así como en los procesos de purificación de bioproductos como el ácido láctico y el furfural, y abarca tanto métodos convencionales como intensificados. El objetivo es resaltar el esquema de biorrefinería y explorar el potencial de la co-producción de bioetanol y bioproductos, considerando tanto la perspectiva económica como la ambiental.

PDF

Referencias

Bandyopadhyay-Ghosh, S., Ghosh, S. B., y Sain, M. (2015). The use of biobased nanofibres in composites. In Biofiber reinforcements in composite materials, 571–647. https://doi.org/10.1533/9781782421276.5.571

Claassen, P., Van Lier, J., López Contreras, A., Van Niel, E., Sijtsma, L., Stams, A., De Vries, S., y Weusthuis, R. (1999). Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52, 741–755. https://doi.org/ 10.1007/s002530051586

Conde-Mejía, C., Jiménez-Gutiérrez, A., y M. El-Halwagi., M. (2013). Assessment of combinations between pretreatment and conversion configurations for bioethanol production. ACS Sustainable Chemistry & Engineering, 1(8), 956–965. https://doi.org/10.1021/sc4000384

Conde-Mejía, C., Jiménez-Gutiérrez, y El-Halwagi, M. (2012). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection, 90, 189–202. https://doi.org/10.1016/j.psep.2011.08.004

Contreras-Zarazúa, G., Martin-Martin, M., Sánchez-Ramírez, E., y Segovia-Hernández, J. G. (2022). Furfural production from agricultural residues using different intensified separation and pretreatment alternatives. economic and environmental assessment. Chemical Engineering and Processing-Process Intensification, 171, 108569. https://doi.org/10.1016/j.cep.2021.108569

Contreras- Zarazúa, G., Sánchez-Ramírez, E., Vázquez-Castillo, J. A., Ponce-Ortega, J. M., Errico, M., Kiss, A. A., y Segovia-Hernández, J. G. (2018). Inherently safer design and optimization of intensified separation processes for furfural production. Industrial & Engineering Chemistry Research, 58(15), 6105–6120. https://doi.org/10.1021/acs.iecr.8b03646

Damián-Huato, M. A., Cruz-León, A., Ramírez-Valverde, B., Romero-Arenas, O., Moreno-Limón, S., y Reyes-Muro, L. (2013). Maíz, alimentación y productividad: modelo tecnológico para productores de temporal de México. Agricultura, Sociedad y Desarrollo, 10(2), 157–176. https://www.scielo.org.mx/pdf/asd/v10n2/v10n2a2.pdf

Dashtban, M., Gilbert, A., y Fatehi, P. (2012). Production of furfural: overview and challenges. J. Sci. Technol. Forest Products Processes, 2(4), 44–53.

Departamento de Energía (10 de noviembre del 2023). Biofuel basic. https://www.energy.gov/eere/bioenergy/biofuel-basics.

Dimían, A. C., Bildea, C. S., y Kiss, A. A. (2014). Process intensification, 35, 397–448. https://doi.org/10.1016/B978-0-444-62700-1.00010-3

Dreyer, L. C., Niemann, A. L., y Hauschild, M. Z. (2003). Comparison of three different lcia methods: EDIP97, CML2001 and Eco-indicator 99: Does it matter which one you choose? The international journal of life cycle assessment, 8(4), 191–200. https://doi.org/10.1007/BF02978471

Espinoza-Vázquez, Y. M., Gómez-Castro, F. I., Sánchez-Ramírez, E., y Romero-Izquierdo, A. G. (2023a). Development and assessment of intensification alternatives on the lignocellulosic bioethanol production process. In Computer Aided Chemical Engineering, 52, 2735–2740. https://doi.org/10.1016/B978-0-443-15274-0.50435-2

Espinoza-Vázquez, Y. M., Hernández-Camacho, N. V., y Gómez-Castro, F. I. (2023b). Agricultural Residues as Raw Materials for a Bio-based Industry. In Sustainable Agricultural Practices and Product Design (pp. 77-99). American Chemical Society.

Garrote, G., Dominguez, H y Parajó, J. (1999). Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff, 57(3), 191-2202

Gómez-Castro, F. I., Segovia-Hernández, J. G., Rodríguez, R. M., & Mejía, C. C. (2023). Advances and challenges in the production and purification of bioethanol using intensified processes. En Bioethanol Fuel Production Processes. II, 426-436.

González-Navarrete, C., Sánchez-Ramírez, E., Ramírez-Márquez, C., Hernández, S., Cossío-Vargas, E., y Segovia-Hernández, J. G. (2021). Innovative reactive distillation process for the sustainable purification of lactic acid. Industrial & Engineering Chemistry Research, 61(1), 621–637. https://doi.org/10.1021/acs.iecr.1c04050

Hahn-Hägerdal, B., Karkumaa, K., Fonseca, C., Spencer-Martins, I., y Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74, 937–953. https://doi.org/10.1007/s00253-006-0827-2

Hong, B., Xue, G., Weng, L., y Guo, X. (2012). Pretreatment of moso bamboo with dilute phosphoric acid. BioResources, 7(4), 4902–4913. https://doaj.org/article/3075a807a4c3478591d3227b003cfe9b

Jönsson, L. J. y Martín, C. (2016). Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009

Kim, S. Y., Kim, D. M., y Lee, B. (2017). Process simulation for the recovery of lactic acid using thermally coupled distillation columns to mitigate the remixing effect. Korean Journal of Chemical Engineering, 34, 1310–1318. https://doi.org/10.1007/s11814-017-0009-1

Kooijman, H. A. y Sorensen, E. (2022). Recent advances and future perspectives on more sustainable and energy efficient distillation processes. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2022.10.005

Kumar, P., Barrett, D. M., Delwiche, M. J., y Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. https://doi.org/10.1021/ie801542g

Kumakiri, I., Yokota, M., Tanaka, R., Shimada, Y., Kiatkittipong, W., Lim, J. W., Murata, M. y Yamada, M. (2021). Process intensification in bio-ethanol production–Recent developments in membrane separation. Processes, 9(6). https://doi.org/10.3390/pr9061028

Law Corner (10 de noviembre del 2023). Stubble burning – a trouble to the environment. https://lawcorner.in/stubble-burning-a-trouble-to-the-environment/.

Loy, Y., Lee, X., y Rangaiah, G. (2015). Bioethanol recovery and purification using extractive dividing-wall column and pressure swing adsorption: An economic comparison after heat integration and optimization. Separation and Purification Technology, 149, 413–427. https://doi.org/10.1016/j.seppur.2015.06.007

Lutze, P., Babi, D. K., Woodley, J. M., & Gani, R. (2013). Phenomena based methodology for process synthesis incorporating process intensification. Industrial & Engineering Chemistry Research, 52(22), 7127-7144. https://doi.org/10.1021/ie302513y

Made in China (2023). Furfural Price. https://www.made-in-china.com/products-search/hot-china-products/Furfural_Price.html.

Mankar, A. R., Pandey, A., Modak, A., y Pant, K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235. https://doi.org/10.1016/j.biortech.2021.125235

Nhien, L. C., Long, N. V. D., Kim, S., y Lee, M. (2016). Design and assessment of hybrid purification processes through a systematic solvent screening for the production of levulinic acid from lignocellulosic biomass. Industrial & Engineering Chemistry Research, 55(18), 5180–5189. https://doi.org/10.1021/acs.iecr.5b04519

O’Connell, D., Batten, D., O’Connor, M., May, B., Raison, J., Keating, B., Beer, T., Braid, A., Haritos, V., Begley, C., Poole, M., Poulton, P., Graham, S., Dunlop, M., Grant, T., Campbell, P. y Lamb, D. (2007). Biofuels in Australia - Issues and Prospects: A Report for the Rural Industries Research and Development Corporation. Rural Industries Research and Development Corporation.

Organización de las Naciones Unidas para la Alimentación y la Agricultura (10 de noviembre del 2023). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL.

Osman, A. I., Mehta, N., Elgarahy, A. M., Al-Hinai, A., Muhtaseb, A. H., y Ronney, D. W. (2021). Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters, 19(6), 4075–4118. https://doi.org/10.1007/s10311-021-01273-0

QuimiNet (2023). Lactic Acid Price. https: //www.quiminet.com/principal/resultados_busqueda.php?N=Lactic+acid&d=P.

Rachamontree, P., Douzou, T., Cheenkachorn, K., Sriariyanun, M., y Rattanaporn, K. (2020). Furfural: A sustainable platform chemical and fuel. Applied Science and Engineering Progress, 13(1), 3–10. https://ph02.tci-thaijo.org/index.php/ijast/article/view/239991

Reboredo, F. H., Lidon, F. C., Ramalho, J. C., y Pessoa, M. F. (2017). The forgotten implications of low oil prices on biofuels. Bioproducts and Biorefining, 11(4), 625–632. https://doi.org/10.1002/bbb.1769

Ritchie, H., Roser, M., y Rosado, P. (2022). Energy, Our World in Data.

https://ourworldindata.org/energySaini, J. K., Saini, R., y Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, 5, 337–353. https://doi.org/10.1007/s13205-014-0246-5

Segovia-Hernández, J. G., Vázquez-Ojeda, M., Gómez-Castro, F., Ramírez-Márquez, C., Errico, M., Tronci, S., y Rong, B.-G. (2014). Process control analysis for intensified bioethanol separation systems. Chemical Engineering and Processing-Process Intensification, 75, 119–125. https://doi.org/10.1016/j.cep.2013.11.002

Senatore, A., Dalena, F., y Basile, A. (2020). Novel bioethanol production processes and purification technology using membranes. Studies in Surface Science and Catalysis. ElSevier, 179. https://doi.org/10.1016/B978-0-444-64337-7.00019-7

Shah, A. A., Seehar, T. H., Sharma, K., y Toor, S. S. (2022). Biomass pretreatment technologies. Hydrocarbon Biorefinery. Elsevier. https://doi.org/10.1016/B978-0-12-823306-1.00014-5

Shrotri, A., Kobayashi, H., y Fukuoka, A. (2017). Catalytic conversion of structural carbohydrates and lignin to chemicals. Advances in catalysis, 60, 59-123. https://doi.org/10.1016/bs.acat.2017.09.002

Suresh, T., Sivarajasekar, N., Balasubramani, K., Ahamad, T., Alam, M., y Naushad, M. (2020). Process intensification and comparison of bioethanol production from food industry waste (potatoes) by ultrasonic assisted acid hydrolysis and enzymatic hydrolysis: Statistical modelling and optimization. Biomass and Bioenergy, 142. https://doi.org/10.1016/j.biombioe.2020.105752

Talebnia, F., Karakashev, D., y Angelidaki, I. (2010). Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource technology, 101(13), 4744–4753. https://doi.org/10.1016/j.biortech.2009.11.080

Tan, L., Tang, Y.-Q., Nishimura, H., Takei, S., Morimura, S., y Kida, K. (2013). Efficient production of bioethanol from corn stover by pretreatment with a combination of sulfuric acid and sodium hydroxide. Preparative Biochemistry and Biotechnology, 43(7), 682–695. https://doi.org/10.1080/10826068.2013.773338

Torres-Ortega, C. E., Segovia-Hernández, J. G., Hernández, S., Hernández, H., Bonilla-Petriciolet, A., y Maya-Yescas, R. (2009). Design and optimization of thermally coupled distillation sequences for purification of bioethanol. In Computer Aided Chemical Engineering, Elsevier, 27, 957–962. https://doi.org/10.1016/S1570-7946(09)70380-3

Tse, T. J., Wiens, D. J., Shen, J., Beattie, A. D., y Reaney, M. J. (2021). Saccharomyces cerevisiae fermentation of 28 barley and 12 oat cultivars. Fermentation, 7(2), 59. https://doi.org/10.3390/fermentation7020059

Turton, R., Bailie, R. C., Whiting, W. B., y Shaeiwitz, J. A. (2008). Analysis, synthesis and design of chemical processes. Pearson Education.

Wingren, A., Galbe, M., y Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: Comparison of ssf and shf and identification of bottlenecks. Biotechnology Progress, 19(4), 1109–1117. https://doi.org/10.1021/bp0340180

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2025 Digital Ciencia@UAQRO