Abstract
Biofuels derived from lignocellulosic biomass residues provide a sustainable alternative, allowing a second use for waste and replacing fossil fuels. However, the direct profitability of biofuel production is limited, which has led to the approach of simultaneous production of other bioproducts through biorefinery schemes. Among biofuels, bioethanol stands out for its capacity to substitute gasoline in certain percentages. In the case of high value-added bioproducts, furfural and lactic acid can be mentioned. Notwithstanding these options, their viability may be compromised if economically competitive schemes against fossil sources are not established. In this context, process intensification plays a key role, as it could help to have compact processes with reduced energy consumption. This work performs an analysis of the existing proposals in biomass to bioethanol conversion processes, as well as in the purification processes of bioproducts such as lactic acid and furfural, both conventional and intensified. The objective is to highlight the biorefinery scheme and explore the potential of the co-production of bioethanol and bioproducts. The analysis is performed from both, economic and environmental perspectives.
References
Bandyopadhyay-Ghosh, S., Ghosh, S. B., y Sain, M. (2015). The use of biobased nanofibres in composites. In Biofiber reinforcements in composite materials, 571–647. https://doi.org/10.1533/9781782421276.5.571
Claassen, P., Van Lier, J., López Contreras, A., Van Niel, E., Sijtsma, L., Stams, A., De Vries, S., y Weusthuis, R. (1999). Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52, 741–755. https://doi.org/ 10.1007/s002530051586
Conde-Mejía, C., Jiménez-Gutiérrez, A., y M. El-Halwagi., M. (2013). Assessment of combinations between pretreatment and conversion configurations for bioethanol production. ACS Sustainable Chemistry & Engineering, 1(8), 956–965. https://doi.org/10.1021/sc4000384
Conde-Mejía, C., Jiménez-Gutiérrez, y El-Halwagi, M. (2012). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection, 90, 189–202. https://doi.org/10.1016/j.psep.2011.08.004
Contreras-Zarazúa, G., Martin-Martin, M., Sánchez-Ramírez, E., y Segovia-Hernández, J. G. (2022). Furfural production from agricultural residues using different intensified separation and pretreatment alternatives. economic and environmental assessment. Chemical Engineering and Processing-Process Intensification, 171, 108569. https://doi.org/10.1016/j.cep.2021.108569
Contreras- Zarazúa, G., Sánchez-Ramírez, E., Vázquez-Castillo, J. A., Ponce-Ortega, J. M., Errico, M., Kiss, A. A., y Segovia-Hernández, J. G. (2018). Inherently safer design and optimization of intensified separation processes for furfural production. Industrial & Engineering Chemistry Research, 58(15), 6105–6120. https://doi.org/10.1021/acs.iecr.8b03646
Damián-Huato, M. A., Cruz-León, A., Ramírez-Valverde, B., Romero-Arenas, O., Moreno-Limón, S., y Reyes-Muro, L. (2013). Maíz, alimentación y productividad: modelo tecnológico para productores de temporal de México. Agricultura, Sociedad y Desarrollo, 10(2), 157–176. https://www.scielo.org.mx/pdf/asd/v10n2/v10n2a2.pdf
Dashtban, M., Gilbert, A., y Fatehi, P. (2012). Production of furfural: overview and challenges. J. Sci. Technol. Forest Products Processes, 2(4), 44–53.
Departamento de Energía (10 de noviembre del 2023). Biofuel basic. https://www.energy.gov/eere/bioenergy/biofuel-basics.
Dimían, A. C., Bildea, C. S., y Kiss, A. A. (2014). Process intensification, 35, 397–448. https://doi.org/10.1016/B978-0-444-62700-1.00010-3
Dreyer, L. C., Niemann, A. L., y Hauschild, M. Z. (2003). Comparison of three different lcia methods: EDIP97, CML2001 and Eco-indicator 99: Does it matter which one you choose? The international journal of life cycle assessment, 8(4), 191–200. https://doi.org/10.1007/BF02978471
Espinoza-Vázquez, Y. M., Gómez-Castro, F. I., Sánchez-Ramírez, E., y Romero-Izquierdo, A. G. (2023a). Development and assessment of intensification alternatives on the lignocellulosic bioethanol production process. In Computer Aided Chemical Engineering, 52, 2735–2740. https://doi.org/10.1016/B978-0-443-15274-0.50435-2
Espinoza-Vázquez, Y. M., Hernández-Camacho, N. V., y Gómez-Castro, F. I. (2023b). Agricultural Residues as Raw Materials for a Bio-based Industry. In Sustainable Agricultural Practices and Product Design (pp. 77-99). American Chemical Society.
Garrote, G., Dominguez, H y Parajó, J. (1999). Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff, 57(3), 191-2202
Gómez-Castro, F. I., Segovia-Hernández, J. G., Rodríguez, R. M., & Mejía, C. C. (2023). Advances and challenges in the production and purification of bioethanol using intensified processes. En Bioethanol Fuel Production Processes. II, 426-436.
González-Navarrete, C., Sánchez-Ramírez, E., Ramírez-Márquez, C., Hernández, S., Cossío-Vargas, E., y Segovia-Hernández, J. G. (2021). Innovative reactive distillation process for the sustainable purification of lactic acid. Industrial & Engineering Chemistry Research, 61(1), 621–637. https://doi.org/10.1021/acs.iecr.1c04050
Hahn-Hägerdal, B., Karkumaa, K., Fonseca, C., Spencer-Martins, I., y Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74, 937–953. https://doi.org/10.1007/s00253-006-0827-2
Hong, B., Xue, G., Weng, L., y Guo, X. (2012). Pretreatment of moso bamboo with dilute phosphoric acid. BioResources, 7(4), 4902–4913. https://doaj.org/article/3075a807a4c3478591d3227b003cfe9b
Jönsson, L. J. y Martín, C. (2016). Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009
Kim, S. Y., Kim, D. M., y Lee, B. (2017). Process simulation for the recovery of lactic acid using thermally coupled distillation columns to mitigate the remixing effect. Korean Journal of Chemical Engineering, 34, 1310–1318. https://doi.org/10.1007/s11814-017-0009-1
Kooijman, H. A. y Sorensen, E. (2022). Recent advances and future perspectives on more sustainable and energy efficient distillation processes. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2022.10.005
Kumar, P., Barrett, D. M., Delwiche, M. J., y Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. https://doi.org/10.1021/ie801542g
Kumakiri, I., Yokota, M., Tanaka, R., Shimada, Y., Kiatkittipong, W., Lim, J. W., Murata, M. y Yamada, M. (2021). Process intensification in bio-ethanol production–Recent developments in membrane separation. Processes, 9(6). https://doi.org/10.3390/pr9061028
Law Corner (10 de noviembre del 2023). Stubble burning – a trouble to the environment. https://lawcorner.in/stubble-burning-a-trouble-to-the-environment/.
Loy, Y., Lee, X., y Rangaiah, G. (2015). Bioethanol recovery and purification using extractive dividing-wall column and pressure swing adsorption: An economic comparison after heat integration and optimization. Separation and Purification Technology, 149, 413–427. https://doi.org/10.1016/j.seppur.2015.06.007
Lutze, P., Babi, D. K., Woodley, J. M., & Gani, R. (2013). Phenomena based methodology for process synthesis incorporating process intensification. Industrial & Engineering Chemistry Research, 52(22), 7127-7144. https://doi.org/10.1021/ie302513y
Made in China (2023). Furfural Price. https://www.made-in-china.com/products-search/hot-china-products/Furfural_Price.html.
Mankar, A. R., Pandey, A., Modak, A., y Pant, K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235. https://doi.org/10.1016/j.biortech.2021.125235
Nhien, L. C., Long, N. V. D., Kim, S., y Lee, M. (2016). Design and assessment of hybrid purification processes through a systematic solvent screening for the production of levulinic acid from lignocellulosic biomass. Industrial & Engineering Chemistry Research, 55(18), 5180–5189. https://doi.org/10.1021/acs.iecr.5b04519
O’Connell, D., Batten, D., O’Connor, M., May, B., Raison, J., Keating, B., Beer, T., Braid, A., Haritos, V., Begley, C., Poole, M., Poulton, P., Graham, S., Dunlop, M., Grant, T., Campbell, P. y Lamb, D. (2007). Biofuels in Australia - Issues and Prospects: A Report for the Rural Industries Research and Development Corporation. Rural Industries Research and Development Corporation.
Organización de las Naciones Unidas para la Alimentación y la Agricultura (10 de noviembre del 2023). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL.
Osman, A. I., Mehta, N., Elgarahy, A. M., Al-Hinai, A., Muhtaseb, A. H., y Ronney, D. W. (2021). Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters, 19(6), 4075–4118. https://doi.org/10.1007/s10311-021-01273-0
QuimiNet (2023). Lactic Acid Price. https: //www.quiminet.com/principal/resultados_busqueda.php?N=Lactic+acid&d=P.
Rachamontree, P., Douzou, T., Cheenkachorn, K., Sriariyanun, M., y Rattanaporn, K. (2020). Furfural: A sustainable platform chemical and fuel. Applied Science and Engineering Progress, 13(1), 3–10. https://ph02.tci-thaijo.org/index.php/ijast/article/view/239991
Reboredo, F. H., Lidon, F. C., Ramalho, J. C., y Pessoa, M. F. (2017). The forgotten implications of low oil prices on biofuels. Bioproducts and Biorefining, 11(4), 625–632. https://doi.org/10.1002/bbb.1769
Ritchie, H., Roser, M., y Rosado, P. (2022). Energy, Our World in Data.
https://ourworldindata.org/energySaini, J. K., Saini, R., y Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, 5, 337–353. https://doi.org/10.1007/s13205-014-0246-5
Segovia-Hernández, J. G., Vázquez-Ojeda, M., Gómez-Castro, F., Ramírez-Márquez, C., Errico, M., Tronci, S., y Rong, B.-G. (2014). Process control analysis for intensified bioethanol separation systems. Chemical Engineering and Processing-Process Intensification, 75, 119–125. https://doi.org/10.1016/j.cep.2013.11.002
Senatore, A., Dalena, F., y Basile, A. (2020). Novel bioethanol production processes and purification technology using membranes. Studies in Surface Science and Catalysis. ElSevier, 179. https://doi.org/10.1016/B978-0-444-64337-7.00019-7
Shah, A. A., Seehar, T. H., Sharma, K., y Toor, S. S. (2022). Biomass pretreatment technologies. Hydrocarbon Biorefinery. Elsevier. https://doi.org/10.1016/B978-0-12-823306-1.00014-5
Shrotri, A., Kobayashi, H., y Fukuoka, A. (2017). Catalytic conversion of structural carbohydrates and lignin to chemicals. Advances in catalysis, 60, 59-123. https://doi.org/10.1016/bs.acat.2017.09.002
Suresh, T., Sivarajasekar, N., Balasubramani, K., Ahamad, T., Alam, M., y Naushad, M. (2020). Process intensification and comparison of bioethanol production from food industry waste (potatoes) by ultrasonic assisted acid hydrolysis and enzymatic hydrolysis: Statistical modelling and optimization. Biomass and Bioenergy, 142. https://doi.org/10.1016/j.biombioe.2020.105752
Talebnia, F., Karakashev, D., y Angelidaki, I. (2010). Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource technology, 101(13), 4744–4753. https://doi.org/10.1016/j.biortech.2009.11.080
Tan, L., Tang, Y.-Q., Nishimura, H., Takei, S., Morimura, S., y Kida, K. (2013). Efficient production of bioethanol from corn stover by pretreatment with a combination of sulfuric acid and sodium hydroxide. Preparative Biochemistry and Biotechnology, 43(7), 682–695. https://doi.org/10.1080/10826068.2013.773338
Torres-Ortega, C. E., Segovia-Hernández, J. G., Hernández, S., Hernández, H., Bonilla-Petriciolet, A., y Maya-Yescas, R. (2009). Design and optimization of thermally coupled distillation sequences for purification of bioethanol. In Computer Aided Chemical Engineering, Elsevier, 27, 957–962. https://doi.org/10.1016/S1570-7946(09)70380-3
Tse, T. J., Wiens, D. J., Shen, J., Beattie, A. D., y Reaney, M. J. (2021). Saccharomyces cerevisiae fermentation of 28 barley and 12 oat cultivars. Fermentation, 7(2), 59. https://doi.org/10.3390/fermentation7020059
Turton, R., Bailie, R. C., Whiting, W. B., y Shaeiwitz, J. A. (2008). Analysis, synthesis and design of chemical processes. Pearson Education.
Wingren, A., Galbe, M., y Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: Comparison of ssf and shf and identification of bottlenecks. Biotechnology Progress, 19(4), 1109–1117. https://doi.org/10.1021/bp0340180
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Digital Ciencia@UAQRO