Abstract
In the last years, organic acids have taken importance on diverse industrial applications. Various studies have taken place, where the use of such substances is proposed as replace of inorganic acids, as sulfuric acid, among others. Inorganic acids are generally aggressive compounds, whose production represents a high environmental impact. On the other hand, the organic acids are less aggressive substances, which can be obtained from biomass. Thus, its production is associated to a lower environmental impact, with potential to contribute to the implementation of circular economy schemes. On the other hand, among the applications on which organic acids can replace to the inorganic ones, the recovery of valuable metals from residues can be mentioned, increasing the potential benefits of such acids to the environment. In this work, the characteristics of the organic acids are presented. The strategies required to produce them from biomass are also discussed, and their potential applications in hydrometallurgy are described.
References
Agreda, V. H. (1993). Acetic acid and its derivatives. CRC Press. https://doi.org/10.1201/9781482277272
Aliano, N. P., & Ellis, M. D. (2009). Oxalic acid: a prospective tool for reducing varroa mite populations in package bees. Experimental and Applied Acarology. 48(4), 303-309. https://doi.org/10.1007/s10493-009-9240-8
Araya, N., Krasławski, A., & Cisternas, L. A. (2020). Towards mine tailings valorization: Recovery of critical materials from Chilean mine tailings. Journal of Cleaner Production. 263, 121555. https://doi.org/10.1016/j.jclepro.2020.121555
Araya, N., Ramírez, Y., Krasławski, A., & Cisternas, L. A. (2021). Feasibility of re-processing mine tailings to obtain critical raw materials using real options analysis. Journal of Environmental Management. 284, 112060. https://doi.org/10.1016/j.jenvman.2021.112060
Astuti, W., Hirajima, T., Sasaki, K., & Okibe, N. (2016). Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Minerals Engineering. 85, 1-16. https://doi.org/10.1016/j.mineng.2015.10.001
Awasthi, A., & Li, J. (2017). An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE. Resources, Conservation and Recycling, 126, 228-239. https://doi.org/10.1016/j.resconrec.2017.07.014
BANXICO. (2022). Sistema de Información Económica. Obtenido consultado el 03 de noviembre de 2023 en: https://www.banxico.org.mx/SieInternet/consultarDirectorioInternetAction.do?sector=2&idCuadro=CR199&accion=consultarCuadro&locale=es
Chauhan, G., Jadhao, P. R., Pant, K. K., & Nigam, K. (2018). Novel Technologies and Conventional Processes for recovery of metals from waste Electrical and Electronic equipment: Challenges & Opportunities – A review. Journal of Environmental Chemical Engineering. 6(1), 1288-1304. https://doi.org/10.1016/j.jece.2018.01.032
Datta, R. y Henry, M. (2006). Lactic acid: recent advances in products, processes and technologies – a review. Journal of Chemical Technology and Biotechnology. 81(7), 1119-1129.
De Souza Vandenberghe, L. P., Soccol, C. R., Pandey, A., & Lebeault, J. M. (1999). Microbial production of citric acid. Brazilian Archives of Biology and Technology. 42(3), 263-276. https://doi.org/10.1590/s1516-89131999000300001
Diaz, L. A., & Lister, T. E. (2018). Economic evaluation of an electrochemical process for the recovery of metals from electronic waste. Waste Management, 74, 384-392. https://doi.org/10.1016/j.wasman.2017.11.050
Flores, P., Hellín, P. y Fenoll, J. (2012). Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chemistry, 132(2), 1049-1054.
Ghodrat, M., Rhamdhani, M. A., Brooks, G., Rashidi, M., & Samali, B. (2017). A thermodynamic-based life cycle assessment of precious metal recycling out of waste printed circuit board through secondary copper smelting. Environmental Development, 24, 36-49. https://doi.org/10.1016/j.envdev.2017.07.001
Gómez Castro, F. I., González-Guerra, G. M., Restrepo-Elorza, M. del P., Montiel-Carrillo, A. P., Álvarez-Rivera, K. Y., Linares-Luna, R. G., Hernández, S. 2022. Residuos de frutas y vegetales como materias primas para la producción de biocombustibles: potencial en el estado de Guanajuato. Digital Ciencia@UAQRO. 15(1), 8–19
González‐Guerra, G. M., Ruiz, J., Tanamachi, K. S., Del Restrepo‐Elorza, M. P., Gómez‐Castro, F. I., Hernández, S., García-García, J. C., & Gamiño‐Arroyo, Z. (2023). Synthesis of bioethanol from mixed vegetable wastes: experimental methodology and characterization. Engineering reports. e12784. https://doi.org/10.1002/eng2.12784
Grand View Research. (octubre de 2023). Organic Chemicals. Recuperado el 24 de octubre de 2023, de Acetic Acid Market Analysis By Application (VAM, Acetic Anhydride, Acetate Esters, PTA) And Segment Forecasts To 2027 : http://www.grandviewresearch.com/industry- analysis/acetic-acid-market
Guadalupe-Alcoser, M. A., Salazar-Llangarí, K. G., Rodríguez-Pinos, A. A., & Brito-Moína, H. L. (2021). Evaluación del proceso de producción de ácido cítrico por fermentación con el uso de Aspergillus Niger. Dominio de las Ciencias. 7(3), 1136-1158. https://doi.org/10.23857/dc.v7i3.2045
Gurgul, A., Szczepaniak, W., & Zabłocka-Malicka, M. (2018). Incineration and pyrolysis vs. steam gasification of electronic waste. Science of The Total Environment. 624, 1119-1124. https://doi.org/10.1016/j.scitotenv.2017.12.151
Gurtler, J.B. y Mai, T.L. (2014). Traditional preservatives – organic acids. En C.A. Batt y M.L. Tortorello (Eds.), Encyclopedia of Food Microbiology, 2a edición (pp. 119–130). Londres, Reino Unido: Academic Press.
ICIS. (s.f.). Acetic acid, Market, Prices and Analysis. Recuperado el 24 de octubre de 2023, de Overview: http://www.icis.com/chemicals/acetic-acid/?tab=tbc-tab4
IJmker, H., Gramblička, M., Kersten, S. R., Van Der Ham, A., & Schuur, B. (2014). Acetic acid extraction from aqueous solutions using fatty acids. Separation and Purification Technology. 125, 256-263. https://doi.org/10.1016/j.seppur.2014.01.050
Işıldar, A., Rene, E. R., Van Hullebusch, E. D., & Lens, P. N. (2018). Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resources, Conservation and Recycling. 135, 296-312. https://doi.org/10.1016/j.resconrec.2017.07.031
Kaya, M. (2018). Current WEEE recycling solutions. En F. Vegliò e I. Birloaga (Eds.), Waste Electrical and Electronic Equipment Recycling: Aqueous Recovery Methods, Woodhead Publishing, Duxford, pp. 33-93. https://doi.org/10.1016/b978-0-08-102057-9.00003-2
Kutney, G. (2007). Sulfur: History, Technology, Applications & Industry. ChemTec Publishing, p. 8.
Lakherwal, D. (2014) Adsorption of Heavy Metals: A Review. International Journal of Environmental Research and Development, 4, 41-48.
Lambros, M., Tran, T., Fei, Q. y Nicolaou, M. (2022). Citric acid: a multifunctional pharmaceutical excipient. Pharmaceutics, 14(5), 972.
Lim, J., Fernández, C.A., Lee, S.W. y Hatzell, M.C. (2021). Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Letters, 6(10), 3676-3685. https://doi.org/10.1021/acsenergylett.1c01614
Liu, B., Liu, L., Deng, B., Huang, C., Zhu, J., Liu, L., He, X., Wei, Y., Qin, C., Liang, C., Liu, S., & Yao, S. (2022). Application and Prospect of Organic acid pretreatment in lignocellulosic biomass separation: A review. International Journal of Biological Macromolecules, 222, 1400-1413. https://doi.org/10.1016/j.ijbiomac.2022.09.270
Liu, Z. (2023). A review on the emerging conversion technology of cellulose, starch, lignin, protein and other organics from vegetable-fruit-based waste. International Journal of Biological Macromolecules, 242, 124804. https://doi.org/10.1016/j.ijbiomac.2023.124804
Mendoza, J. C. D., & Kulich, E. I. (2004). Aplicación de balances de masa y energía al proceso de fermentación en estado sólido de bagazo de caña de azúcar con Aspergillus niger. Biotecnología Aplicada, 21(2), 85-91. https://biblat.unam.mx/hevila/Biotecnologiaaplicada/2004/vol21/no2/5.pdf
Muñoz, A., Sáenz, A., López, L., Cantú, L., & Barajas, L. (2014). Ácido cítrico: Compuesto interesante. Revista Científica de la Universidad Autónoma de Coahuila. 6(12), 18-23.
Nwaila, G. T., Ghorbani, Y., Zhang, S. E., Frimmel, H. E., Tolmay, L. C., Rose, D. H., Nwaila, P. C., & Bourdeau, J. E. (2021). Valorisation of Mine Waste - Part I: Characteristics of, and sampling methodology for, consolidated mineralised tailings by using Witwatersrand Gold Mines (South Africa) as an example. Journal of Environmental Management, 295, 113013. https://doi.org/10.1016/j.jenvman.2021.113013
Ochoa Gómez, J. R., (2003). Síntesis de ácido oxálico por electrorreducción de dióxido de carbono, un proceso medioambientalmente compatible. Tecnología y Desarrollo, 1. https://revistas.uax.es/index.php/tec_des/article/view/499
Omanov, B.Sh., Fayzullaev, N.I., Musulmonov, N.Kh., Xatamova, M.S. y Asrorov, D.A. (2020). Optimization of vinyl acetate synthesis process. International Journal of Control and Automation, 13(1), 231-238.
Papagianni, M. (2011). Organic Acids. En M. Moo-Young (Ed.), Comprehensive Biotechnology, Vol. 1, 2a edición, Pergamon, Amsterdam, pp. 109–120.
Precedence Research (2022). Sulfuric acid market. Extraído el 23 de febrero de 2023 desde: https://www.precedenceresearch.com/sulfuric-acid-market#:~:text=The%20global%20sulfuric%20acid%20market,of%20the%20overall%20acids%20market.
Priya, A., & Hait, S. (2018). Toxicity Characterization of metals from various waste printed circuit boards. Process Safety and Environmental Protection, 116, 74-81. https://doi.org/10.1016/j.psep.2018.01.018
Ripoll, X. P. (2011). Obtención de exopolisacáridos de interés industrial a partir del lactosuero y permeatos. Tesis Doctoral, Universidad de Granada. https://digibug.ugr.es/bitstream/10481/2376/1/18101604.pdf
Rodríguez-Domínguez, J.C. y Kirsch, G. (2006). Sulfated zirconia, a mild alternative to mineral acids in the synthesis of hydroxycoumarins. Tetrahedron Letters, 47(19), 3279-3281.
Weissermel, K., y Arpe, H. (1997). Industrial Organic Chemistry, 3a edición, Wiley-VCH, New York.
Roukas, T. y Kotzekidou, P. (2020). Pomegranate peel waste: a new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions. Environmental Science and Pollution Research. 27, 13105–13113. https://doi.org/10.1007/s11356-020-07928-9
Sánchez, O., Ortiz, M., & Betancourt, A. (2004). Obtención de ácido cítrico a partir de suero de leche por fermentación con Aspergillus spp. Revista Colombiana de Biotecnología, VI(1), 43-54.
Santos Tanamachi, K. Alvarado Ahedo, N.C., Gárate Ruiz, J.R., González Guerra, G.M., Gómez Castro, F.I., Hernández Castro, S., 2022, Revaloración de residuos de fruta y verdura para la producción de biocombustibles. Jóvenes en la Ciencia, 16, 1-14.
Scapinello, C., Furlan, A. C., & De Faria, H. G. (1999). Influência de diferentes níveis de ácido fumárico sobre o desempenho de coelhos em crescimento. Revista Brasileira De Zootecnia. 28(4), 785-790. https://doi.org/10.1590/s1516-35981999000400019
Soccol, C.R., Vandenberghe, L.P.S., Rodrigues, C. y Pandey, A. (2006). New perspectives for citric acid production and application. Food Technology and Biotechnology, 44(2), 141-149.
Speight, J.G. (2018). Reaction Mechanisms in Environmental Engineering: Analysis and Prediction Butterworth-Heinermann , Oxford, pp. 81–114.
Statista (2023a). Market volume of sulfuric acid worldwide from 2015 to 2021, with a forecast for 2022 to 2029. Extraído el 23 de febrero de 2023 desde: https://www.statista.com/statistics/1245226/sulfuric-acid-market-volume-worldwide/.
Statista (2023b). Market volume of acetic acid worldwide from 2015 to 2021, with a forecast for 2022 to 2029. Extraído el 09 de marzo de 2023 desde: https://www.statista.com/statistics/1245203/acetic-acid-market-volume-worldwide/.
Statista (2023c). Market volume of lactic acid worldwide from 2015 to 2021, with a forecast for 2022 to 2029. Extraído el 09 de marzo de 2023 desde: https://www.statista.com/statistics/1310495/lactic-acid-market-volume-worldwide/.
Thomas, C. M., & Süß‐Fink, G. (2003). Ligand effects in the rhodium-catalyzed carbonylation of methanol. Coordination Chemistry Reviews, 243(1-2), 125-142. https://doi.org/10.1016/s0010-8545(03)00051-1
Vidra, A. y Németh, Á. (2018). Bio-produced acetic acid: a review. Periodica Polytechnica Chemical Engineering, 62(3), 245-256.
Villagómez-Ibarra, J., Nava-Hernández, C. V., Flores-Juárez, E. I., Martínez-Cortés, O. I., González-Guerra, G. M., & Gómez-Castro, F. I. (2023). Co-producción de biocombustibles y ácidos orgánicos a partir de residuos de frutas y vegetales. Jóvenes en la Ciencia, 21, 1–10.
Xiao, J., Li, J. y Xu, Z. (2020). Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives. Environmental Science & Technology. 54(1), 9-25.
Yan, W., Guan, Q., & Jin, F. (2023). Catalytic conversion of cellulosic biomass to harvest high-valued organic acids. iScience. 26(10), 107933. https://doi.org/10.1016/j.isci.2023.107933
Zhang, F., Liu, H., Wu, D., Zhi, W., Kong, X., Liu, Y., Xing, T., & Sun, Y. (2023). Co-production of lactate and volatile fatty acids through repeated-batch fermentation of fruit and vegetable waste: effect of cycle time and replacement ratio. Bioresource Technology, 387, 129678. https://doi.org/10.1016/j.biortech.2023.129678
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Digital Ciencia@UAQRO