Agua electrolizada e intermitencia de luz como posibles elicitores en la agricultura
PDF (Spanish)

Keywords

Agua electrolizada
intermitencia
luz
elicitor
cultivo
metabolitos secundarios

How to Cite

Agua electrolizada e intermitencia de luz como posibles elicitores en la agricultura. (2024). Digital Ciencia@UAQRO, 17(2), 83-93. https://doi.org/10.61820/dcuaq.v17i2.1398

Abstract

El consumo de hortalizas ha aumentado en las últimas décadas. En busca de productos que mejoren el rendimiento y la calidad de alimentos, nace el uso de los agroquímicos que, en su mayoría, dañan el suelo y al medio ambiente. Por lo anterior, se proponen alternativas a su uso, como los elicitores, que desencadenan respuestas fisiológicas y morfológicas como defensa. El agua electrolizada (AE) ha sido estudiada como elicitor en germinación de algunas semillas, aplicándola en concentraciones de 10 a 250 mg/L. Evaluado variables metabólicas como flavonoides y compuestos bioactivos. La intermitencia de luz se ha estudiado, ya que su aplicación ha demostrado tener efecto elicitor en algunos cultivos, promoviendo la síntesis de pigmentos fotosintéticos y compuestos fenólicos. El objetivo de esta revisión fue realizar una investigación sobre la aplicación de AE e intermitencia de luz como elicitores. Se utilizaron buscadores internacionales con un criterio de inclusión del año 2014 al 2024, se encontraron un total de 680 artículos. Los reportes de AE presentaron variaciones en el pH y tiempo de exposición, sin embargo, los resultados fueron
similares, reportando que su uso si promueve la germinación, producción de metabolitos secundarios y actividad enzimática. Los reportes del uso de intermitencia de luz mostraron variaciones en el modo de aplicación y el nivel de radicación, no obstante, reportaron un incremento en la germinación y aumento en la producción de compuestos fenólicos. Sin embargo, aún no se ha reportado su aplicación de manera conjunta, se requieren más reportes para evaluar su efecto sinérgico.

PDF (Spanish)

References

Abe, K., Achiwa, N., Itoho, M., Shimas, S., & Kusakari, S. I. (2004). Effects of electrolyzed water concentration on the yield and quality characteristics of mitsuba (Japanese honewort, Cryptotaenia japonica Hassk, cv.'Osaka-Shiroguki Mitsuba') cultured by hydroponics. Food Preservation Science, 30(6), 281-288. https://doi.org/10.5891/jafps.30.281

Acevedo, F. E., Peiffer, M., Ray, S., Meagher, R., Luthe, D. S., & Felton, G. W. (2018). Intraspecific differences in plant defense induction by fall armyworm strains. New phytologist, 218(1), 310-321. https://doi.org/10.1111/nph.14981

Al-Haq M. I., Sugiyama J., Isobe S. (2005). Applications of electrolyzed water in Agriculture and food industries. Food Science and Technology, 11, 135-150. https://doi.org/10.3136/fstr.11.135

Andrade, C. A., de Souza, K. R. D., de Oliveira Santos, M., da Silva, D. M., & Alves, J. D. (2018). Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Scientia horticulturae, 232, 40-45. doi.org/10.1016/j.scienta.2017.12.048

Arena, M. E. (2016). Estudio de algunos fenómenos morfofisiológicos y cambios bioquímicos en Berberis microphylla G. Forst. (sinónimo B. Buxifolia Lam.) asociados a la formación y maduración de frutos en Tierra de Fuego y su relación con la producción de metabolitos útiles. [Tesis de doctorado]. Universidad Nacional Del Sur.

http://repositoriodigital.uns.edu.ar/handle/123456789/3391

Blanchard, M. G., & Runkle, E. S. (2010). Intermittent light from a rotating high-pressure sodium lamp promotes flowering of long-day plants. HortScience, 45(2), 236-241. https://doi.org/10.21273/HORTSCI.45.2.236

Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria [CEDERSSA]. (2020). Análisis de la producción y consumo de hortalizas.http://www.cedrssa.gob.mx/files/b/13/88Ana%CC%81lisis_produccio%CC%81n_consumo_hortalizas.pdf

Copping, L. G. (1998). Review of major agrochemical classes and uses. In Chemistry and technology of agrochemical formulations (pp. 8-40). Dordrecht: Springer Netherlands. DOI:10.1007/978-94-011-4956-3

Garzón Fandiño, A., & Gonzalez Cardoso, J. D. (2019). Efecto de la intermitencia de la luz led sobre el crecimiento y producción de metabolitos de Scenedesmus obliquus. http://hdl.handle.net/20.500.12010/5750

Hao, J., Wu, T., Li, H., Wang, W., & Liu, H. (2016). Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutine in germinated buckwheat. Food Chemistry, 201, 87–93. https://doi.org/10.1016/j.foodchem.2016.01.037

Hou, M., Gao, J., Deng, L., Zhou, Q., Cao, W., Zhao, S. M., & Huang, C. (2011). Effect of electrolyzed water on growth and development, nutritional quality of Chinese cabbage. Hubei Agric Sci, 7(50), 1342-1346.

Kim, H. J., Feng, H., Kushad, M. M., & Fan, X. (2006). Effects of ultrasound, irradiation, and acidic electrolyzed water on germination of alfalfa and broccoli seeds and Escherichia coli O157: H7. Journal of food science, 71(6), M168-M173. Doi.org/10.1111/j.1750-3841.2006.00064.x

Kondrateva, N., Filatov, D., Bolshin, R., Krasnolutskaya, M., Shishov, A., Ovchukova, S., & Mikheev, G. (2021). Determination of the effective operating hours of the intermittent lighting system for growing vegetables. In IOP Conference Series: Earth and Environmental Science (Vol. 935, No. 1, p. 012004). IOP Publishing. Doi.org/10.1088/1755-1315/935/1/012004

Liang, D., Wang, Q., Zhao, D., Han, X., & Hao, J. (2019). Systematic application of slightly acidic electrolyzed water (SAEW) for natural microbial reduction of buckwheat sprouts. LWT – Food Science and Technology, 108, 14–20. https://doi.org/10.1016/j.lwt.2019.03.021

Liu R., He X., Shi J., Nirasawa S., Tatsumi E., Li L., & Liu, H. (2013). Effect of electrolyzed water on decontamination, germination and γ-aminobutric acid accumulation of brown rice. Food control, 33:1-5. https://doi.org/10.1016/j.foodcont.2013.02.008

Liu Rui, Yu Zhanglong, Song Yu y Jingrui (2016). Application of electrolyzed water in black wheat sprout production. MODERN FOOD SCIENCE & TECHNOLOGY, 32(6), 265-270. DOI:10.13982/j.mfst.1673-9078.2016.6.041

Li, T., & Yang, Q. (2015). Advantages of diffuse light for horticultural production and perspectives for further research. Frontiers in Plant Science, 6, 704. doi: 10.3389/fpls.2015.00704

Macías, A. M., & García, Y. L. S. (2021). Desarrollo agroindustrial y degradación ambiental en México (1941-2021). Observatorio medioambiental, (24), 195-228. https://doi.org/10.5209/obmd.79522

Melo-Sabogal, D. V., García-Sánchez, E. N., Alonso-Segura, D., Contreras-Morales, E., Ojeda-Rodríguez, D., Salinas-Botello, A., Meas Yunny & Hernández-Pimentel, V. M. (2023). In vitro assay of neutral electrolyzed water against Fusarium oxysporum and its application as germination pretreatment on tomato (Lycopersicon esculentum), lettuce (Lactuca sativa L.) and cucumber (Cucumis sativus) seeds. Energy Nexus, 100249. https://doi.org/10.1016/j.nexus.2023.100249

Narayani, M., & Srivastava, S. (2017). Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochemistry reviews, 16, 1227-1252. DOI:10.1007/s11101-017-9534-0

Radman, R., Saez, T., Bucke, C., & Keshavarz, T. (2003). Elicitation of plants and microbial cell systems. Biotechnology and applied biochemistry, 37(1), 91-102. http://www.babonline.org/bab/037/bab0370091.htm

Rahman, S., Khan, I., & Oh, D.-H. (2016). Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives. Comprehensive Reviews in Food Science and Food Safety, 15(3), 471–490. doi:10.1111/1541-4337.12200

Ruíz-Rivas, M., Téllez-Valerio, C. E., Martínez-Núñez, M., Vera-Hernández, P. F., Martínez-Romero, E., & Rosas-Cárdenas, F. D. F. (2022). Influencia de la luz en la generación de callos y el cultivo in vitro de plantas. Revista mexicana de ciencias agrícolas, 13(SPE27), 11-21. https://doi.org/10.29312/remexca.v13i27.3156

Rui, L., Jianxiong, H., Haijie, L., & Lite, L. (2011). Application of electrolyzed functional wáter on producing mung bean sprouts. Food Control, 22(8), 1311–1315. https://doi.org/10.1016/j.foodcont.2011.02.005

Suárez-Zúñiga, O., Contreras-Morales, G. E., Melo-Sabogal, D. V., & Hernández-Pimentel, V. M. (2023). Tendencias recientes en aplicaciones de agua electrolizada: áreas de estudio y perspectivas. TIP Revista Especializada en Ciencias Químico-Biológicas, 26. https://doi.org/10.22201/fesz.23958723e.2023.549

Xu, M. Y., Wu, K. X., Liu, Y., Liu, J., & Tang, Z. H. (2020). Effects of light intensity on the growth, photosynthetic characteristics, and secondary metabolites of Eleutherococcus senticosus Harms. Photosynthetica, 58(7830546), 3. DOI: 10.32615/ps.2020.045

Yu Z. L., Liu R. (2019). Effect of electrolyzed water on enzyme activities of triticale malt during germination. Journal of Food Science and Technology, 56(3):1495-1501. http://doi.org/10.1007/s13197-019-03637-5

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Digital Ciencia@UAQRO