Análisis numérico de las características estáticas de cojinetes de gas poroso mediante el modelo Darcy-Forchheimer
PCT-13-7
EPUB
PDF

Palabras clave

Cojinetes de gas
Medio poroso
Cojinete aerostático
Capacidad de carga
Coeficiente de rigidez

Cómo citar

[1]
A. S. Durán Castillo and J. C. A. Jauregui Correa, “Análisis numérico de las características estáticas de cojinetes de gas poroso mediante el modelo Darcy-Forchheimer”, PCT, vol. 7, no. 13, pp. 118–136, Jul. 2024, doi: 10.61820/pct.v7i13.1486.

Resumen

Este trabajo muestra al análisis numérico de las características estáticas de un cojinete de gas poroso mediante la solución de la ecuación de Reynolds modificada con el modelo no-lineal de Darcy-Forchheimer para describir el flujo a través del medio poroso. Se utilizó el método de diferencias finitas, con diferencia en el centro, y el algoritmo iterativo de Newton-Raphson para su solución debido a la no linealidad del problema. La relación de los pasos entre las dimensiones circunferencial y longitudinal y la suposición inicial, son las condiciones principales para que el modelo converja en una solución. La cantidad máxima de nodos aceptados por el algoritmo fue 36000. La precisión de los resultados obtenidos fue aceptable en comparación con trabajos publicados, esto aporta un esfuerzo más en el desarrollo de la tecnología de los cojinetes de gas poroso.

EPUB
PDF

Referencias

R. C. Juvinall and K. M. Marshek, Fundamentals of machine component design. Hoboken, Nj: Wiley, 2020.

P. Childs, “Journal bearings,” Elsevier eBooks, pp. 167–230, Jan. 2019, doi: https://doi.org/10.1016/b978-0-08-102367-9.00005-6.

R. G. Budynas, J Keith Nisbett, and Joseph Edward Shigley, Shigley’s mechanical engineering design. New York, Ny: Mcgraw-Hill Education, 2020.

John William Powell, Design of Aerostatic Bearings. 1970.

Q. Gao, W. Chen, L. Lu, D. Huo, and K. Cheng, “Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives,” Tribology International, vol. 135, pp. 1–17, Jul. 2019, doi: https://doi.org/10.1016/j.triboint.2019.02.020.

H. J. Sneck, and R. C. Elwell. "The externally pressurized, porous wall, gas-lubricated journal bearing. II." ASLE Transactions vol. 4, no 38, pp. 339–345, 1965. doi: https://doi.org10.1080/05698196508972105.

H. J. Sneck, and K. T. Yen. "The externally pressurized, porous wall, gas-lubricated journal bearing." ASLE Transactions, vol. 7, no 3, pp. 288-298 1964. doi: https://doi.org/10.1080/05698196408972058.

Sneck, H.J. and Yen, K.T. ‘The externally pressurized, porous wall, gas-lubricated journal bearing-III’, ASLE Transactions, 10(3), pp. 339–347. 1967. doi: https://doi.org/10.1080/05698196708972192.

H. Mori, H. Yabe, H. Yamakage, and J. Furukawa, “Theoretical Analysis of Externally pressurized porous Journal Gas Bearing (1st Report),” Transactions of the Japan Society of Mechanical Engineers, vol. 33, no. 254, pp. 1718–1726, Jan. 1967, doi: 10.1299/kikai1938.33.1718.

H. Mori, H. Yabe, and H. Yamakage, “Theoretical Analysis of Externally Pressurized Porous Journal Gas Bearings : 2nd Report, Journal Bearing with Solid Sleeve Parts,” Bulletin of the JSME, vol. 12, no. 54, pp. 1512–1518, Jan. 1969, doi: 10.1299/jsme1958.12.1512.

E. P. Gargiulo, “Porous wall Gas Lubricated Journal bearings: Theoretical investigation,” Journal of Lubrication Technology, vol. 101, no. 4, pp. 458–465, Oct. 1979, doi: 10.1115/1.3453395.

J. W. Lund, “Calculation of stiffness and damping properties of gas bearings,” Journal of Lubrication Technology, vol. 90, no. 4, pp. 793–803, Oct. 1968, doi: 10.1115/1.3601723.

N. S. Rao and B. C. Majumdar, “Dynamic stiffness and damping coefficients of aerostatic, porous, journal bearings,” Journal of Mechanical Engineering Science, Oct. 1978, doi: 10.1243/jmes_jour_1978_020_049_02.

“Air bearing application and design guide revision e -january 2006 New Way Air Bearings Air Bearing Application and Design Guide Bearings Air Bearing Application and Design Guide -Revision E.” Accessed: Aug. 16, 2023. [Online]. Available: https://www.newwayairbearings.com/sites/default/files/new_way_application_and_design_guide_%20Rev_E_2006-01-18.pdf

M. Miyatake, S. Yoshimoto, and J. Sato, “Whirling instability of a rotor supported by aerostatic porous journal bearings with a surface-restricted layer,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 220, no. 2, pp. 95–103, Feb. 2006, doi: 10.1243/13506501jet89.

G. Belforte, T. Raparelli, V. Viktorov, and A. Trivella, “Permeability and inertial coefficients of porous media for air bearing feeding systems,” Journal of Tribology, vol. 129, no. 4, pp. 705–711, Apr. 2007, doi: 10.1115/1.2768068.

Y. Otsu, M. Miyatake, and S. Yoshimoto, “Dynamic characteristics of aerostatic porous journal bearings with a Surface-Restricted layer,” Journal of Tribology, vol. 133, no. 1, Dec. 2010, doi: 10.1115/1.4002730.

W. Li, S. Wang, Z. Zhao, K. Zhang, K. Feng, and W. Hou, “Numerical and experimental investigation on the performance of hybrid porous gas journal bearings,” Lubrication science, vol. 33, no. 2, pp. 60–78, Dec. 2020, doi: https://doi.org/10.1002/ls.1527

L. S. Andrés, J. Yang, and A. Devitt, “Porous Gas Journal Bearings: An Exact Solution Revisited and Force Coefficients for Stable Rotordynamic Performance,” Applied Sciences, vol. 11, no. 17, p. 7949, Aug. 2021, doi: https://doi.org/10.3390/app11177949

Y. Gu, J. Cheng, C. Xie, L. Li, and C. Zheng, “Theoretical and Numerical Investigations on Static Characteristics of Aerostatic Porous Journal Bearings,” Machines, vol. 10, no. 3, p. 171, Feb. 2022, doi: https://doi.org/10.3390/machines10030171.

R. Nicoletti, Z. De Castro Silveira, and B. De Moraes Purquerio, “Modified Reynolds equation for aerostatic porous radial bearings with quadratic Forchheimer Pressure-Flow assumption,” Journal of Tribology, vol. 130, no. 3, Jun. 2008, doi: 10.1115/1.2919776.

J. Wang, “Design of gas bearing systems for precision applications,” Jan. 1993, doi: https://doi.org/10.6100/ir391172.

P. Forchheimer, “Wasserbewegung durch Boden,” vol. 45, pp. 1782–1788, Jan. 1901.

H. Liu and Y. Xu, “Gas-Permeability Measurement in Porous Graphite Under Steady-State Flow,” SSRN Electronic Journal, 2021, doi: https://doi.org/10.2139/ssrn.3990054.

J. Kim, J.-H. Ha, J. Lee, and I.-H. Song, “Effect of pore structure on gas permeability constants of porous alumina,” Ceramics International, vol. 45, no. 5, pp. 5231–5239, Apr. 2019, doi: https://doi.org/10.1016/j.ceramint.2018.11.219.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 Perspectivas de la Ciencia y la Tecnología