Abstract
The microbiome of Spodoptera frugiperda plays a fundamental role during its biological cycle, since a great
diversity of microorganisms interact through different mechanisms to maintain homeostasis. Their functions
include, for example, defense against pathogens, degradation and the supply of functional molecules, among
others. However, factors such as changes in diet, the use of insecticides, antibiotics, environmental factors, age
or sex can interfere with the microbiome causing dysbiosis. Therefore, the objective of this work was to perform
a metagenomic analysis of healthy and dead larvae with symptoms of infection to detect potential pathogenic
agents. The results show that the genus Enterococcus presented an average relative abundance of 89.2% in
healthy larvae and an average of 94.75% in dead larvae. The presence of Pseudomonas was also detected, with
an average relative abundance of 10.8% in healthy larvae and 0.5% in dead larvae. While Acetobacter presented
an average relative abundance in dead larvae of 4.5%. Interestingly, readings corresponding to viruses were
0.004% in healthy larvae and 1.48% in dead larvae, which were related to pathogenic viruses of the baculovirus
family. The detection of potential pathogens that can affect S. frugiperda during rearing is of most importance
to avoid their dispersal or affecting the colony.
References
W. T. Tay, R. L. Meagher, C. Czepak, and A. T. Groot, “Spodoptera frugiperda: Ecology, Evolution, and Management Options of an Invasive Species,” Annu Rev Entomol, vol. 68, no. 1, pp. 299–317, Jan. 2023, doi: 10.1146/annurev-ento-120220-102548.
J. R. L. Pinto, A. F. Torres, C. C. Truzi, N. F. Vieira, A. M. Vacari, and S. A. De Bortoli, “Artificial Corn-Based Diet for Rearing Spodoptera frugiperda (Lepidoptera: Noctuidae),” Journal of Insect Science, vol. 19, no. 4, Jul. 2019, doi: 10.1093/jisesa/iez052.
S. Cruz-Esteban, N. M. Mérida-Torres, K. P. Álvarez-Morales, C. J. López-Flores, and E. A. Malo, “Effect of the Diet in the Biological Cycle and in the Components of its Sexual Pheromone of Spodoptera frugiperda,” Southwestern Entomologist, vol. 45, no. 1, pp. 227–239, Mar. 2020, doi: 10.3958/059.045.0124.
D.-D. Li, J.-Y. Li, Z.-Q. Hu, T.-X. Liu, and S.-Z. Zhang, “Fall Armyworm Gut Bacterial Diversity Associated with Different Developmental Stages, Environmental Habitats, and Diets,” Insects, vol. 13, no. 9, p. 762, Aug. 2022, doi: 10.3390/insects13090762.
Sharanabasappa, C. M. Kalleshwaraswamy, M. S. Maruthi, and H. B. Pavithra, “ Biology of invasive fall army worm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on maize ,” Indian Journal of Entomology, vol. 80, no. 3, p. 540, 2018, doi: 10.5958/0974-8172.2018.00238.9.
L. Villamizar, P. Cuartas, J. Gómez, G. P. Barrera, C. Espinel, and M. Lopez-Ferber, “Virus entomopatógenos en el control biológico de insectos.” 2018.
A. Bravo, S. Likitvivatanavong, S. S. Gill, and M. Soberón, “Bacillus thuringiensis: A story of a successful bioinsecticide,” Insect Biochem Mol Biol, vol. 41, no. 7, pp. 423–431, Jul. 2011, doi: 10.1016/J.IBMB.2011.02.006.
M. F. Higuita Palacio et al., “Dry and Rainy Seasons Significantly Alter the Gut Microbiome Composition and Reveal a Key Enterococcus sp. (Lactobacillales: Enterococcaceae) Core Component in Spodoptera frugiperda (Lepidoptera: Noctuidae) Corn Strain From Northwestern Colombia,” Journal of Insect Science, vol. 21, no. 6, Nov. 2021, doi: 10.1093/jisesa/ieab076.
J. A. Ugwu, M. Liu, H. Sun, and F. O. Asiegbu, “Microbiome of the larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) from maize plants,” Journal of Applied Entomology, vol. 144, no. 9, pp. 764–776, Nov. 2020, doi: 10.1111/JEN.12821.
W. Su, J. Liu, P. Bai, B. Ma, and W. Liu, “Pathogenic fungi-induced susceptibility is mitigated by mutual Lactobacillus plantarum in the Drosophila melanogaster model,” BMC Microbiol, vol. 19, no. 1, pp. 1–12, 2019.
C. M. Cirimotich, J. L. Ramirez, and G. Dimopoulos, “Native microbiota shape insect vector competence for human pathogens,” Cell Host Microbe, vol. 10, no. 4, pp. 307–310, 2011.
A. Thong-On, K. Suzuki, S. Noda, J. Inoue, S. Kajiwara, and M. Ohkuma, “Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites,” Microbes Environ, vol. 27, no. 2, pp. 186–192, 2012.
Y. Chen, H. Zhou, Y. Lai, Q. Chen, X.-Q. Yu, and X. Wang, “Gut Microbiota Dysbiosis Influences Metabolic Homeostasis in Spodoptera frugiperda,” Front Microbiol, vol. 12, Sep. 2021, doi: 10.3389/fmicb.2021.727434.
R. Zheng et al., “Comparative Analysis of Gut Microbiota and immune genes of wild and Captive Spodoptera frugiperda to reveal the response of the immune system to eld environment in Jianghuai region, China,” 2022, doi: 10.21203/rs.3.rs-1744028/v1.
L. Yuning, L. Luyang, C. Xueming, Y. Xianmei, L. Jintian, and S. Benshui, “The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables,” Scientific Reports |, vol. 12, p. 13063, 2022, doi: 10.1038/s41598-022-17278-w.
J. Galloway-Peña and B. Hanson, “Tools for Analysis of the Microbiome,” Digestive Diseases and Sciences, vol. 65, no. 3. Springer, pp. 674–685, Mar. 01, 2020. doi: 10.1007/s10620-020-06091-y.
J. C. Wooley, A. Godzik, and I. Friedberg, “A Primer on Metagenomics,” PLoS Comput Biol, vol. 6, pp. 1–13, 2010, doi: 10.1371/journal.
M. Á. Zavala-Sánchez et al., “Bioactivity of 1-octacosanol from Senna crotalarioides (Fabaceae: Caesalpinioideae) to Control Spodoptera frugiperda (Lepidoptera: Noctuidae),” Florida Entomologist, vol. 102, no. 4, pp. 731–737, Jan. 2020, doi: 10.1653/024.102.0410.
University of Chicago, “Bacterial and Viral Bioinformatics Resource Center (BV-BRC),” 2022. https://www.bv-brc.org/ (accessed Oct. 07, 2022).
S. J. Bush, “Read trimming has minimal effect on bacterial SNP-calling accuracy,” 2020, doi: 10.1099/mgen.0.000434.
J. Lu and S. L. Salzberg, “Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2,” Microbiome, vol. 8, no. 1, pp. 1–11, 2020.
Y. P. Chen et al., “Effects of Host Plants on Bacterial Community Structure in Larvae Midgut of Spodoptera frugiperda,” Insects, vol. 13, no. 4, Apr. 2022, doi: 10.3390/insects13040373.
V. I. D. Ros, “Baculoviruses: General Features (Baculoviridae),” in Encyclopedia of Virology, Elsevier, 2021, pp. 739–746.
G. Rohrmann, “Introduction to the baculoviruses and their taxonomy,” Baculovirus Molecular Biology; National Center for Biotechnology Information: Bethesda, MD, USA, 2011.
B. Szewczyk, L. Rabalski, E. Krol, W. Sihler, and M. L. de Souza, “Baculovirus biopesticides-safe alternative to chemical protection of plants.,” 2009.
A. G. Hussain, J. T. Wennmann, G. Goergen, A. Bryon, and V. I. D. Ros, “Viruses of the fall armyworm spodoptera frugiperda: A review with prospects for biological control,” Viruses, vol. 13, no. 11. MDPI, Nov. 01, 2021. doi: 10.3390/v13112220.
G. O. Bedford, “Biology and management of palm dynastid beetles: recent advances,” Annu Rev Entomol, vol. 58, pp. 353–372, 2013.
V. Prasad and S. Srivastava, “Insect viruses,” in Ecofriendly pest management for food security, Elsevier, 2016, pp. 411–442.
R. Tang et al., “Transcriptomics and metagenomics of common cutworm (Spodoptera litura) and fall armyworm (Spodoptera frugiperda) demonstrate differences in detoxification and development,” BMC Genomics, vol. 23, no. 1, Dec. 2022, doi: 10.1186/s12864-022-08613-6.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 Perspectivas de la Ciencia y la Tecnología