Resumen
De acuerdo con informes de la Organización Mundial de la Salud (OMS), la hipertensión se considera el factor de riesgo cardiovascular de mayor frecuencia, afectando del 25 al 30% de la población mundial. Uno de los principales agentes causantes de la hipertensión es la enzima convertidora de angiotensina-I (ECA), la cual desempeña un papel fundamental en la regulación de la presión arterial mediante la modulación del sistema renina-angiotensina-aldosterona. Debido a lo anterior, existe una amplia disponibilidad de fármacos con capacidad de inhibición de la ECA. Sin embargo, estos fármacos pueden ocasionar efectos secundarios adversos, como tos, dolor de cabeza, erupciones en la piel, alteración del gusto, angioedema, náuseas y reacciones alérgicas. Por esta razón, existe un gran interés en la obtención de inhibidores de la ECA de fuentes naturales que permitan disminuir los efectos secundarios y la dependencia de los fármacos. Particularmente, los péptidos bioactivos presentes en hidrolizados enzimáticos de proteína han mostrado propiedades antihipertensivas debido a que inhiben la ECA, por lo que pueden ser considerados como una alternativa prometedora en la prevención y/o tratamiento de la hipertensión. El objetivo de este trabajo fue evaluar la actividad inhibidora de la ECA (in vitro) de los hidrolizados enzimáticos obtenidos de proteínas (albúmina y globulina) del grano de cacao, con el propósito de que pueda ser considerado como una fuente natural de agentes antihipertensivos potenciales. Los resultados mostraron que el tratamiento enzimático (con alcalasa) de albúmina y globulina del grano de cacao es un bioproceso factible para la producción de hidrolizados con actividad inhibidora de la ECA. Particularmente, a partir de la globulina se generaron los hidrolizados y fracciones de péptidos (< 3000 Da) con mayor capacidad de inhibición de la ECA, por lo que podrían ser considerados en el diseño de alimentos funcionales.
Referencias
I.U. Okagu, T.P.C. Ezeorba, E.C. Aham, R.N. Aguchem, and R.N. Nechi, “Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides,” Food chemistry: molecular sciences, vol. 4, p. 100078, 2022.
N. Shobako, “Hypotensive peptides derived from plant proteins,” Peptides, vol. 142, p. 170573, 2021.
A.V. Quiroga, P. Aphalo, A.E. Nardo, and M.C. Añón, “In Vitro Modulation of Renin–Angiotensin System Enzymes by Amaranth (Amaranthus hypochondriacus) Protein-Derived Peptides: Alternative Mechanisms Different from ACE Inhibition,” Journal of Agricultural and Food Chemistry, vol. 65, pp. 7415-7423, 2017.
M. Manzoor, J. Singh, and A. Gani, “Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies,” Food Chemistry, vol. 373, p. 131395, 2022.
A. Dullius, M.I. Goettert, and C.F. Volken de Souza, “Whey protein hydrolysates as a source of bioactive peptides for functional foods – biotechnological facilitation of industrial scale-up,” Journal of Functional Foods, vol. 42, pp. 58-74, 2018.
A. Bertazzo, S. Comai, I. Brunato, M. Zancato, and C.V.L. Costa, “The content of protein and non-protein (free and protein-bound) tryptophan in Theobroma cacao beans,” Food Chemistry, vol. 124, pp. 93-96, 2011.
M. Rusconi, and A. Conti, “Theobroma cacao L. the food of the gods: a scientific approach beyond myths and claims,” Pharmacological Research, vol. 61, no. 1, pp. 5-13, 2010.
E.G. Tovar-Pérez, L. Guerrero-Becerra, and E. Lugo-Cervantes, “Antioxidant activity of hydrolysates and peptide fractions of glutelin from cocoa (Theobroma cacao L.) seed,” CyTA - Journal of Food, vol. 15, no. 4, pp. 489-496, 2017.
A.M. Preza, M.E. Jaramillo, A.M. Puebla, J.C. Mateos, R. Hernández, and E. Lugo, “Antitumor activity against murine lymphoma L5178Y model of proteins from cacao (Theobroma cacao L.) seeds in relation with in vitro antioxidant activity,” BMC-Complementary and Alternative Medicine, vol. 10, no. 61, pp. 1-12, 2010.
L.J. Coronado-Cáceres, G. Rabadán-Chavez, L. Quevedo-Corona, B. Hernández-Ledesma, A. Miliar-García, L. Mojica, and E. Lugo-Cervantes, “Anti-obesity effect of cocoa proteins (Theobroma cacao L.) variety “Criollo” and the expression of genes related to the dysfunction of white adipose tissue in high-fat diet-induced obese rats,” Journal of Functional Foods, vol. 62, p. 103519, 2019.
L.J. Coronado-Cáceres, B. Hernández-Ledesma, L. Mojica, L. Quevedo-Corona, G. Rabadán-Chavez, G.A. Castillo-Herrera, and E. Lugo-Cervantes, “Cocoa (Theobroma cacao L.) seed-derived peptides reduce blood pressure by interacting with the catalytic site of the angiotensin-converting enzyme,” Foods, vol. 10, no. 10, p. 2340, 2021.
P.M. Kirchhoff, B. Biehl, and G. Crone, G, “Peculiarity of the accumulation of free amino acids during cocoa fermentation,” Food Chemistry, vol. 31, no. 4, pp. 295-311, 1989.
J. Voigt, and B. Biehl, “The major seed proteins of Theobroma cacao L.,” Food Chemistry, vol. 47, no. 2, pp. 145-151, 1993.
M.M. Bradford, “A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding,” Analytical Biochemistry, vol. 72, pp. 248-254, 1976.
J. Adler-Nissen, “Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid,” Journal of Agricultural and Food Chemistry, vol. 27, no. 6, pp. 1256-1262, 1979.
E.G. Tovar-Pérez, I. Guerrero-Legarreta, A. Farrés-González, and J. Soriano-Santos, “Angiotensin I-converting enzyme-inhibitory peptide fractions from albumin 1 and globulin as obtained of amaranth grain,” Food Chemistry, vol. 116, no. 2, pp. 437-444, 2009.
T.P. Castro-Jácome, L.E. Alcántara-Quintana, E. Lugo-Cervantes, E. Montalvo- González, R.I. Ortiz-Basurto, and E.G. Tovar-Pérez, “Anti-elastase, anti-tyrosinase and antioxidant properties of a peptide fraction obtained from sorghum (Sorghum bicolor L. Moench) grain,” International Food Research Journal, vol. 26, no. 6, pp. 1813-1822, 2019.
T. Romero-Cortes, M.A. Salgado-Cervantes, P. García-Alamilla, M.A. García-Alvarado, G.C. Rodríguez-Jimenes, M. Hidalgo-Morales, and V. Robles-Olvera, “Relationship between fermentation index and other biochemical changes evaluated during the fermentation of Mexican cocoa (Theobroma cacao) beans,”. Journal of the Science of Food and Agriculture, vol. 93, no. 10, pp. 2596-2604, 2013.
Y. Chen, H. Li, Y. Shen, C. Zhang, X. Kong, X. Li, and Y. Hua, “Endopeptidases, exopeptidases, and glutamate decarboxylase in soybean water extract and their in vitro activity,” Food Chemistry, vol. 360, p. 130026, 2021.
E.G. Tovar-Pérez, A. Lugo-Radillo, and S. Aguilera-Aguirre, “Amaranth grain as a potential source of biologically active peptides: a review of their identification, production, bioactivity, and characterization,” Food Reviews International, vol.35, no. 3, pp. 221-245, 2019.
D. Xie, L. Du, H. Lin, E. Su, Y. Shen, J. Xie, and D. Wei, “In vitro-in silico screening strategy and mechanism of angiotensin I-converting enzyme inhibitory peptides from α-lactalbumin,” LWT, vol 156, p. 112984, 2022.
I.U. Okagu, T.P.C. Ezeorba, E.C. Aham, R.N. Aguchem, and R.N. Nechi, “Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides,” Food Chemistry: Molecular Sciences, vol. 4, p. 100078, 2022.
X. Gong, Q. An, L. Le, F. Geng, L. Jiang, J. Yan, D. Xiang, L. Peng, L. Zou, G. Zhao, and Y. Wan, “Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production,” Critical Reviews in Food Science and Nutrition, vol. 62, no. 11, pp. 2855-2871, 2022.
X. Rui, J.I. Boye, B.K. Simpson, and S.O. Prasher, “Angiotensin I-converting enzyme inhibitory properties of Phaseolus vulgaris bean hydrolysates: Effects of different thermal and enzymatic digestion treatments,” Food Research International, vol. 49, pp. 739-746, 2012.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2024 Perspectivas de la Ciencia y la Tecnología