Puntos Cuánticos De Sulfuro De Zinc Dopados Con Manganeso
pct10-5
PDF

Palabras clave

Nanotecnología
Puntos cuanticos
Sensores
Fotocatalisis
Fotovoltaica
Semiconductores

Cómo citar

[1]
O. E. Blanco Guzmán, C. Guzmán Martínez, W. N. . Velázquez Arjona, M. Guerra Balcázar, J. M. Mora Muñoz, and E. A. Elizalde Peña, “Puntos Cuánticos De Sulfuro De Zinc Dopados Con Manganeso: Síntesis, Aplicaciones Y Perspectivas A Futuro”, PCT, vol. 6, no. 10, pp. 41–52, Jan. 2023, doi: 10.61820/esc70d80.

Resumen

Recientemente se han encontrado diversas aplicaciones para los puntos cuánticos de ZnS:Mn debido a sus propiedades optoelectrónicas. En el presente trabajo se recopila brevemente información sobre este material con el objetivo de ampliar el conocimiento disponible acerca de su importancia en diversas investigaciones. Se discuten los métodos de síntesis, así como las principales propiedades y funciones que se han reportado en la literatura así como sus perspectivas a futuro.

PDF

Referencias

C. Buzea and I. Pacheco, “Nanomaterials and their Classification,” in Advanced Structured Materials, New Delhi: Springer India, 2017, pp. 3-45.

K. R. Nemade and S. A. Waghuley, “UV-Vis spectroscopic study of one pot synthesized strontium oxide quantum dots,” Results in Physics, vol. 3, pp. 52-54, 2013.

J. Cassidy and M. Zamkov, “Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius,” J. Chem. Phys., vol. 152, no. 11, p. 110902, Mar. 2020.

P. Zheng and N. Wu, “Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review,” Chem. Asian J., vol. 12, no. 18, pp. 2343-2353, Sep. 2017.

Z.-J. Li et al., “Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation,” J. Mater. Chem. A Mater. Energy Sustain., vol. 5, no. 21, pp. 10365-10373, May 2017.

Y. Lin, Y. Lin, Y. Meng, and Y. Wang, “CdS quantum dots sensitized ZnO spheres via ZnS overlayer to improve efficiency for quantum dots sensitized solar cells,” Ceram. Int., vol. 40, no. 6, pp. 8157-8163, Jul. 2014.

A. Shiohara, A. Hoshino, K.-I. Hanaki, K. Suzuki, and K. Yamamoto, “On the cyto-toxicity caused by quantum dots,” Microbiol. Immunol., vol. 48, no. 9, pp. 669-675, 2004.

A. R. Clapp, E. R. Goldman, and H. Mattoussi, “Capping of CdSe–ZnS quantum dots with DHLA and subsequent conjugation with proteins,” Nat. Protoc., vol. 1, no. 3, pp. 1258-1266, Sep. 2006.

X. Fang et al., “ZnS nanostructures: From synthesis to applications,” Prog. Mater Sci., vol. 56, no. 2, pp. 175-287, Feb. 2011.

R. N. Juine, A. Das, and S. Amirthapandian, “Concentration controlled QDs ZnS synthesis without capping agent and its optical properties,” Mater. Lett., vol. 128, pp. 160-162, Aug. 2014.

C. R. Roy, H. P. Gies, and S. Toomey, “The solar UV radiation environment: measurement techniques and results,” J. Photochem. Photobiol. B, vol. 31, no. 1, pp. 21-27, Nov. 1995.

V. D. Mote, Y. Purushotham, and B. N. Dole, “Structural, morphological and optical properties of Mn doped ZnS nanocrystals,” Ceramica, vol. 59, no. 351, pp. 395-400, Sep. 2013.

S. Feng and R. Xu, “New materials in hydrothermal synthesis,” Acc. Chem. Res., vol. 34, no. 3, pp. 239-247, Mar. 2001.

C. Zhou, J. Song, L. Zhou, L. Zhong, J. Liu, and Y. Qi, “Greener synthesis and optimization of highly photoluminescence Mn2+-doped ZnS quantum dots,” J. Lumin., vol. 158, pp. 176-180, Feb. 2015.

Y. Hu, B. Hu, B. Wu, Z. Wei, and J. Li, “Hydrothermal preparation of ZnS: Mn quantum dots and the effects of reaction temperature on its structural and optical properties,” J. Mater. Sci.: Mater. Electron., vol. 29, no. 19, pp. 16715-16720, Oct. 2018.

V. T. Liveri and M. Rosoff, “Reversed micelles as nanometer-size solvent media,” Nano-surface chemistry, Marcel Dekker New York, 2002, p. 674.

L. Qi, “Synthesis of inorganic nanostructures in reverse micelles,” Encyclopedia of Surface and Colloid Science, vol. 2, no. 6, pp. 183-6207, 2006.

S. P. Moulik and B. K. Paul, “Structure, dynamics and transport properties of microemulsions,” Adv. Colloid Interface Sci., vol. 78, no. 2, pp. 99-195, Sep. 1998.

D. Myers and Others, Surfaces, interfaces, and colloids, vol. 415. Wiley New York, 1999.

V. Uskoković and M. Drofenik, “SYNTHESIS OF MATERIALS WITHIN REVERSE MICELLES,” Surf. Rev. Lett., vol. 12, no. 02, pp. 239-277, Apr. 2005.

M. Boutonnet, J. Kizling, P. Stenius, and G. Maire, “The preparation of monodisperse colloidal metal particles from microemulsions,” Colloids and Surfaces, vol. 5, no. 3, pp. 209-225, Nov. 1982.

K. Holmberg, “Surfactant-templated nanomaterials synthesis,” J. Colloid Interface Sci., vol. 274, no. 2, pp. 355-364, Jun. 2004.

W. F. C. Sager, “Controlled formation of nanoparticles from microemulsions,” Curr. Opin. Colloid Interface Sci., vol. 3, no. 3, pp. 276-283, Jun. 1998.

B. A. Smith, J. Z. Zhang, A. Joly, and J. Liu, “Luminescence decay kinetics of Mn2+-doped ZnS nanoclusters grown in reverse micelles,” Phys. Rev. B Condens. Matter, vol. 62, no. 3, pp. 2021-2028, Jul. 2000.

R. M. Ibrahim, M. Markom, and H. Abdullah, “Optical Properties of Ni2+-, Co2+-, and Mn2+-doped ZnS Nanoparticles Synthesized Using Reverse Micelle Method,” ECS J. Solid State Sci. Technol., vol. 4, no. 2, p. R31, Dec. 2014.

G. Murugadoss, “Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method,” J. Lumin., vol. 131, no. 10, pp. 2216-2223, Oct. 2011.

R. M. Krsmanović Whiffen et al., “Structural, optical and crystal field analyses of undoped and Mn2+-doped ZnS nanoparticles synthesized via reverse micelle route,” J. Lumin., vol. 146, pp. 133-140, Feb. 2014.

F. A. La Porta, L. Gracia, J. Andrés, J. R. Sambrano, J. A. Varela, and E. Longo, “A DFT study of structural and electronic properties of ZnS polymorphs and its pressure-induced phase transitions,” J. Am. Ceram. Soc., vol. 97, no. 12, pp. 4011-4018, Dec. 2014.

F. A. La Porta et al., “Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method,” J. Alloys Compd., vol. 556, pp. 153-159, Apr. 2013.

F. A. La Porta, J. Andrés, M. S. Li, J. R. Sambrano, J. A. Varela, and E. Longo, “Zinc blende versus wurtzite ZnS nanoparticles: control of the phase and optical properties by tetrabutylammonium hydroxide,” Phys. Chem. Chem. Phys., vol. 16, no. 37, pp. 20127-20137, Oct. 2014.

Y. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis, and J. Q. Xiao, “Low-temperature synthesis of hexagonal (Wurtzite) ZnS nanocrystals,” J. Am. Chem. Soc., vol. 126, no. 22, pp. 6874-6875, Jun. 2004.

A. Hazarika, A. Pandey, and D. D. Sarma, “Rainbow Emission from an Atomic Transition in Doped Quantum Dots,” J. Phys. Chem. Lett., vol. 5, no. 13, pp. 2208-2213, Jul. 2014.

V. Ramasamy, K. Praba, and G. Murugadoss, “Synthesis and study of optical properties of transition metals doped ZnS nanoparticles,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 96, pp. 963-971, Oct. 2012.

G. Murugadoss and M. Rajesh Kumar, “Synthesis and optical properties of monodispersed Ni2+-doped ZnS nanoparticles,” Applied Nanoscience, vol. 4, no. 1, pp. 67-75, Jan. 2014.

W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater., vol. 29, no. 2, pp. 313-317, Nov. 2006.

K. B. Lin and Y. H. Su, “Photoluminescence of Cu:ZnS, Ag:ZnS, and Au:ZnS nanoparticles applied in Bio-LED,” Appl. Phys. B, vol. 113, no. 3, pp. 351-359, Dec. 2013.

S. S. Nath et al., “Green luminescence of ZnS and ZnS:Cu quantum dots embedded in zeolite matrix,” J. Appl. Phys., vol. 105, no. 9, p. 094305, May 2009.

D.-Z. Qin, G. Yang, G.-X. He, L. I. Zhang, Q.-X. Zhang, and L.-Y. Li, “The investigation on synthesis and optical properties of Ag-doped ZnS nanocrystals by hydrothermal method,” Chalcogenide Lett, vol. 9, no. 11, pp. 441-446, 2012.

Y. Hu, Z. Wei, B. Wu, B. Shen, Q. Dai, and P. Feng, “Photoluminescence of ZnS: Mn quantum dot by hydrothermal method,” AIP Adv., vol. 8, no. 1, p. 015014, Jan. 2018.

Y. Y. Bacherikov et al., “Structural and optical properties of ZnS:Mn micro-powders, synthesized from the charge with a different Zn/S ratio,” J. Mater. Sci.: Mater. Electron., vol. 28, no. 12, pp. 8569-8578, Jun. 2017.

R. K. Chandrakar, R. N. Baghel, V. K. Chandra, and B. P. Chandra, “Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles,” Superlattices Microstruct., vol. 86, pp. 256-269, Oct. 2015.

H. Li, W. Y. Shih, and W.-H. Shih, “Non-heavy-metal ZnS quantum dots with bright blue photoluminescence by a one-step aqueous synthesis,” Nanotechnology, vol. 18, no. 20, p. 205604, Apr. 2007.

L. Ma and W. Chen, “Luminescence enhancement and quenching in ZnS: Mn by Au nanoparticles,” J. Appl. Phys., vol. 107, no. 12, p. 123513, 2010.

P. K. R. and R. Viswanatha, “Mechanism of Mn emission: Energy transfer vs charge transfer dynamics in Mn-doped quantum dots,” APL Materials, vol. 8, no. 2, p. 020901, Feb. 2020.

W. Q. Peng, S. C. Qu, G. W. Cong, and Z. G. Wang, “Concentration effect of Mn2+ on the photoluminescence of ZnS:Mn nanocrystals,” J. Cryst. Growth, vol. 279, no. 3, pp. 454-460, Jun. 2005.

E. M. Miller et al., “Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films,” ACS Nano, vol. 10, no. 3, pp. 3302-3311, Mar. 2016.

M. D. Prè, A. Martucci, and M. Leoni, “Synthesis and characterization of ZnS:Mn nanoparticles,” Photonics for Solar Energy Systems III, May 2010, vol. 7725, p. 77250U.

T. P. Nguyen, T. P. Nguyen, Q. V. Lam, and T. B. Vu, “Effects of structure on photoluminescence characteristics of Mn2+-doped ZnS quantum dots for anti-counterfeiting ink application,” Solid State Sci., vol. 101, p. 106123, Mar. 2020.

R. Viswanath et al., “Synthesis and photoluminescence enhancement of PVA capped Mn2+ doped ZnS nanoparticles and observation of tunable dual emission: A new approach,” Appl. Surf. Sci., vol. 301, pp. 126-133, May 2014.

I. Hussain et al., “Different controlled nanostructures of Mn-doped ZnS for high-performance supercapacitor applications,” Journal of Energy Storage, vol. 32, p. 101767, Dec. 2020.

D. Diaz-Diestra, B. Thapa, J. Beltran-Huarac, B. R. Weiner, and G. Morell, “L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity,” Biosens. Bioelectron., vol. 87, pp. 693-700, Jan. 2017.

P. Deng, L.-Q. Lu, W.-C. Cao, and X.-K. Tian, “Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 173, pp. 578-583, Feb. 2017.

M. Geszke-Moritz, G. Clavier, J. Lulek, and R. Schneider, “Copper- or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media,” J. Lumin., vol. 132, no. 4, pp. 987-991, Apr. 2012.

J. Patel, B. Jain, A. K. Singh, and M. Susan, “Mn-doped ZnS quantum dots–an effective nanoscale sensor,” Microchem. J., 2020, [En linea].Disponible:https://www.sciencedirect.com/science/article/pii/S0026265X19335325?casa_token=PyMYNNOte_sAAAAA:C0p411vllzSJ3iJgujfqDmS5TtAf2_ixWH4FbA8FC6_ttFzvr-POVPPm9DUrvLZkWwPSgLJo1s0

L. Tan, C. Huang, R. Peng, Y. Tang, and W. Li, “Development of hybrid organic–inorganic surface imprinted Mn-doped ZnS QDs and their application as a sensing material for target proteins,” Biosensors and Bioelectronics, vol. 61, pp. 506-511, Nov. 2014.

Y. He, H.-F. Wang, and X.-P. Yan, “Self-assembly of Mn-doped ZnS quantum dots/octa(3-aminopropyl)octasilsequioxane octahydrochloride nanohybrids for optosensing DNA,” Chemistry, vol. 15, no. 22, pp. 5436-5440, 2009.

K. Manzoor, S. Johny, D. Thomas, S. Setua, D. Menon, and S. Nair, “Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging,” Nanotechnology, vol. 20, no. 6, p. 065102, Feb. 2009.

H. Cui et al., “Rapid and efficient isolation and detection of circulating tumor cells based on ZnS:Mn2+ quantum dots and magnetic nanocomposites,” Talanta, vol. 202, pp. 230-236, Sep. 2019.

A. C. S. Samia, X. Chen, and C. Burda, “Semiconductor quantum dots for photodynamic therapy,” J. Am. Chem. Soc., vol. 125, no. 51, pp. 15736-15737, Dec. 2003.

D. Diaz-Diestra et al., “Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media,” J. Nanopart. Res., vol. 17, no. 12, p. 461, Nov. 2015.

C. E. Probst, P. Zrazhevskiy, V. Bagalkot, and X. Gao, “Quantum dots as a platform for nanoparticle drug delivery vehicle design,” Adv. Drug Deliv. Rev., vol. 65, no. 5, pp. 703-718, May 2013.

D. Diaz-Diestra, B. Thapa, D. Badillo-Diaz, J. Beltran-Huarac, G. Morell, and B. R. Weiner, “Graphene Oxide/ZnS:Mn Nanocomposite Functionalized with Folic Acid as a Nontoxic and Effective Theranostic Platform for Breast Cancer Treatment,” Nanomaterials (Basel), vol. 8, no. 7, Jun. 2018, doi: 10.3390/nano8070484.

S. K. Vaishanav, J. Korram, R. Nagwanshi, K. K. Ghosh, and M. L. Satnami, “Mn2+ doped-CdTe/ZnS modified fluorescence nanosensor for detection of glucose,” Sens. Actuators B Chem., vol. 245, pp. 196-204, Jun. 2017.

L. Bahshi, R. Freeman, R. Gill, and I. Willner, “Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots,” Small, vol. 5, no. 6, pp. 676-680, Mar. 2009.

P. Wu, Y. He, H.-F. Wang, and X.-P. Yan, “Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids,” Anal. Chem., vol. 82, no. 4, pp. 1427-1433, Feb. 2010.

L. Cao, J. Ye, L. Tong, and B. Tang, “A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing,” Chemistry, vol. 14, no. 31, pp. 9633-9640, 2008.

J. Heo and C.-S. Hwang, “Surface Properties and Photocatalytic Activities of the Colloidal ZnS:Mn Nanocrystals Prepared at Various pH Conditions,” Nanomaterials, vol. 5, no. 4, pp. 1955-1970, 2015.

J. Patel, A. K. Singh, and S. A. C. Carabineiro, “Assessing the Photocatalytic Degradation of Fluoroquinolone Norfloxacin by Mn:ZnS Quantum Dots: Kinetic Study, Degradation Pathway and Influencing Factors,” Nanomaterials (Basel), vol. 10, no. 5, May 2020, doi: 10.3390/nano10050964.

L. Wang et al., “Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity,” Appl. Surf. Sci., vol. 391, pp. 557–564, Jan. 2017.

S. Kannan, N. P. Subiramaniyam, and M. Sathishkumar, “Effect of annealing temperature and Mn doping on the structural and optical properties of ZnS thin films for enhanced photocatalytic degradation under visible light irradiation,” Inorg. Chem. Commun., vol. 119, p. 108068, Sep. 2020.

J. Wang et al., “Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%,” J. Mater. Chem. A Mater. Energy Sustain., vol. 4, no. 3, pp. 877-886, Jan. 2016.

O. E. Semonin et al., “Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell,” Science, vol. 334, no. 6062, pp. 1530-1533, Dec. 2011.

P. Huang, S. Xu, M. Zhang, W. Zhong, Z. Xiao, and Y. Luo, “Carbon quantum dots improving photovoltaic performance of CdS quantum dot-sensitized solar cells,” Opt. Mater., vol. 110, p. 110535, Dec. 2020.

F. A. Farahani, A. Poro, M. Rezaee, and M. Sameni, “Enhancement in power conversion efficiency of CdS quantum dot sensitized solar cells through a decrease in light reflection,” Opt. Mater. , vol. 108, p. 110248, Oct. 2020.

Y. Xue et al., “Toward scalable PbS quantum dot solar cells using a tailored polymeric hole conductor,” ACS Energy Lett., vol. 4, no. 12, pp. 2850-2858, Dec. 2019.

Y. Zhang et al., “Hybrid Quantum Dot/Organic Heterojunction: A Route to Improve Open-Circuit Voltage in PbS Colloidal Quantum Dot Solar Cells,” ACS Energy Lett., vol. 5, no. 7, pp. 2335-2342, Jul. 2020.

L. Yuan et al., “Four-Terminal Tandem Solar Cell with Dye-Sensitized and PbS Colloidal Quantum-Dot-Based Subcells,” ACS Appl. Energy Mater., vol. 3, no. 4, pp. 3157-3161, Apr. 2020.

X. Ling et al., “14.1% CsPbI 3 perovskite quantum dot solar cells via cesium cation passivation,” Adv. Energy Mater., vol. 9, no. 28, p. 1900721, Jul. 2019.

M. Hao et al., “Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs 1- x FA x PbI 3 quantum dot solar cells with reduced phase segregation,” Nature Energy, vol. 5, no. 1, pp. 79-88, 2020.

J. Kim, S. Song, Y.-H. Kim, and S. K. Park, “Recent progress of quantum dot‐based photonic devices and systems: A comprehensive review of materials, devices, and applications,” Small Structures, vol. 2, no. 3, p. 2000024, Mar. 2021.

A. Le Donne, S. Kanti Jana, S. Banerjee, S. Basu, and S. Binetti, “Optimized luminescence properties of Mn doped ZnS nanoparticles for photovoltaic applications,” J. Appl. Phys., vol. 113, no. 1, p. 014903, Jan. 2013.

S. Ummartyotin and Y. Infahsaeng, “A comprehensive review on ZnS: From synthesis to an approach on solar cell,” Renewable Sustainable Energy Rev., vol. 55, pp. 17-24, Mar. 2016.

S. Horoz et al., “Absorption Induced by Mn Doping of ZnS for Improved Sensitized Quantum-Dot Solar Cells,” Phys. Rev. Applied, vol. 3, no. 2, p. 024011, Feb. 2015.

H. Labiadh, B. Sellami, A. Khazri, W. Saidani, and S. Khemais, “Optical properties and toxicity of undoped and Mn-doped ZnS semiconductor nanoparticles synthesized through the aqueous route,” Opt. Mater., vol. 64, pp. 179-186, Feb. 2017.

S. Touaylia and H. Labiadh, “Effect of the exposure to Mn-doped ZnS nanoparticles on biomarkers in the freshwater western mosquitofish Gambusia affinis,” Int. J. Environ. Health Res., vol. 29, no. 1, pp. 60-70, Feb. 2019.

S. R. Chalana, V. S. Kavitha, R. Reshmi Krishnan, and V. P. Mahadevan Pillai, “Tailoring the visible emissions in ZnS:Mn films for white light generation,” J. Alloys Compd., vol. 771, pp. 721-735, Jan. 2019.

T. P. Nguyen, T. B. Vu, and Q. V. Lam, “Study of photoluminescent and photometric properties of ZnS:Mn2+ quantum dots for white light emission,” Opt. Mater., vol. 110, p. 110537, Dec. 2020.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2023 Perspectivas de la Ciencia y la Tecnología