Mecanismo de acción de tratamientos precosecha con ácido salicílico para reducir la reversión en el fruto de zarzamora
PCT-13-9
EPUB
PDF

Palabras clave

Zarzamora
reversión
capacidad antioxidante
ácido salicílico

Cómo citar

[1]
J. E. MARTINEZ CAMACHO, N. I. FERRUSQUÍA JIMÉNEZ, and I. . TORRES PACHECO, “Mecanismo de acción de tratamientos precosecha con ácido salicílico para reducir la reversión en el fruto de zarzamora”, PCT, vol. 7, no. 13, pp. 154–165, Jul. 2024, doi: 10.61820/pct.v7i13.1383.

Resumen

La reversión (RDR, red drupelet reversion por sus siglas en inglés) es un desorden fisiológico que afecta de manera específica a los frutos de zarzamora durante su comercialización. Se caracteriza por un cambio de coloración de negro a rojizo en las drupas individuales, provocando quedisminuyasuvalorcomercial. Elmecanismoespecíficodeestefenómenoaúnestásiendoinvestigado,sin embargo algunos reportes sugieren que el fenómeno de reversión estárelacionado a la degradación de pigmentos en el fruto, el cual puede ser agravado por el daño mecánico así como las condiciones de almacenamiento.Aunque los reportes sugieren que no existe una alteración significativa en las propiedades organolépticas de la zarzamora a causa de la reversión, el aspecto visual afecta la percepción de la calidad del fruto, reduciendo su atractivo comercial y por consecuencia generando pérdidas económicas.En relación a esto, reportes recientes sugieren que tratamientos foliares en etapas precosecha con ácido salicílico (AS) han sido efectivos manteniendo la calidad de la zarzamora en poscosecha. Con este trabajo, se investigó y propuso un mecanismo de acción del ácido salicílico en la conservación de la zarzamora, con particular atención en la incidencia de reversión en el fruto.

EPUB
PDF

Referencias

M. Edgley, D. Close, and P. Measham, “Red drupelet reversion in blackberries: A complex of genetic and environmental factors,” Scientia Horticulturae, vol. 272, p. 109555, 2020.

T. M. Chizk, J. R. Clark, C. Johns, L. Nelson, H. Ashrafi, R. Aryal, and M. L. Worthington, “Genome-wide association identifies key loci controlling blackberry postharvest quality,” Frontiers in Plant Science, vol. 14, p. 1182790, 2023.

M. Edgley, D. Close, P. Measham, and D. Nichols, “Physiochemistry of blackberries (rubus l. subgenus rubus watson) affected by red drupelet reversion,” Postharvest Biology and Technology, vol. 153, pp. 183–190, 2019.

R. Threlfall, A. Dunteman, J. Clark, and M. Worthington, “Using an online survey to determine consumer perceptions of fresh-market blackberries,” in XII I8nternational Rubus and Ribes Symposium: Innovative Rubus and Ribes Production for High Quality Berries in Changing 1277, 2019, pp. 469–476.

A. R. Flores-Sosa, D. Soto-Magan˜a, L. E. Gonzalez-de la Vara, L. Sanchez-Segura, M. Bah, D. M. Rivera-Pastrana, G. M. Nava, and E. M. Mercado-Silva, “Red drupelet reversion in blackberries caused by mechanical damage is not linked to a reduction in anthocyanin content,” Postharvest Biology and Technology, vol. 180, p. 111618, 2021.

G. Pérez-Pérez, M. Fabela-Gallegos, M. Vázquez-Barrios, D. Rivera-Pastrana, L. Palma-Tirado, E. Mercado-Silva, and V. Escalona, “Effect of the transport vibration on the generation of the color reversion in blackberry fruit,” in VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits-Ethical and Technological Issues 1194, 2016, pp. 1329–1336.

A. R. Flores-Sosa, M. J. Fabela-Gallegos, M. E. Cruz-Acevedo, D. M. Rivera-Pastrana, G. M. Nava, and E. M. Mercado-Silva, “A portable vibration system to induce and evaluate susceptibility to red drupelet reversion in blackberry cultivars,” Horticulturae, vol. 8, no. 7, p. 631, 2022.

M. Edgley, D. C. Close, and P. F. Measham, “Effects of climatic conditions during harvest and handling on the postharvest expression of red drupelet reversion in blackberries,” Scientia Horticulturae, vol. 253, pp. 399–404, 2019.

M. Edgley, D. Close, and P. Measham, “Nitrogen application rate and harvest date affect red drupelet reversion and postharvest quality in ‘ouachita’blackberries,” Scientia Horticulturae, vol. 256, p. 108543, 2019.

B. Lawrence and J. C. Melgar, “Harvest, handling, and storage recommendations for improving postharvest quality of blackberry cultivars,”

HortTechnology, vol. 28, no. 5, pp. 578–583, 2018.

J. E. McCoy, J. R. Clarke, A. A. Salgado, and A. Jecmen, “Evaluation of harvest time/temperature and storage temperature on postharvest incidence of red drupelet reversion development and firmness of blackberry (rubus l. subgenus rubus watson),” Discovery, The Student Journal of Dale Bumpers College of Agricultural, Food and Life Sciences, vol. 17, no. 1, pp. 59–65, 2016.

M. E. Armour, M. Worthington, J. R. Clark, R. T. Threlfall, and L. Howard, “Effect of harvest time and fruit firmness on red drupelet reversion in blackberry,” HortScience, vol. 56, no. 8, pp. 889–896, 2021.

M. J. Kim, M. Y. Lee, J. C. Shon, Y. S. Kwon, K.-H. Liu, C. H. Lee, and K.-M. Ku, “Untargeted and targeted metabolomics analyses of blackberries–understanding postharvest red drupelet disorder,” Food chemistry, vol. 300, p. 125169, 2019.

R. T. Threlfall, J. R. Clark, A. N. Dunteman, and M. L. Worthington, “Identifying marketable attributes of fresh-market blackberries through consumer sensory evaluations,” HortScience, vol. 56, no. 1, pp. 30–35, 2021.

A. A. Salgado and J. R. Clark, ““crispy” blackberry genotypes: A breeding innovation of the university of arkansas blackberry breeding program,” HortScience, vol. 51, no. 5, pp. 468–471, 2016.

A. L. Myers, R. T. Threlfall, L. R. Howard, C. R. Brownmiller, J. R. Clark, M. L. Worthington, and S. Lafontaine, “Identifying unique quality attributes of arkansas-grown fresh-market blackberries,” ACS Food Science & Technology, vol. 3, no. 5, pp. 816–830, 2023.

C. Chen, C. Sun, Y. Wang, H. Gong, A. Zhang, Y. Yang, F. Guo, K. Cui, X. Fan, and X. Li, “The preharvest and postharvest application of salicylic acid and its derivatives on storage of fruit and vegetables: A review,” Scientia Horticulturae, vol. 312, p. 111858, 2023.

E. Baninaiem and A. M. Dastjerdi, “Enhancement of storage life and maintenance of quality in tomato fruits by preharvest salicylic acid treatment,” Frontiers in Sustainable Food Systems, vol. 7, p. 1180243, 2023.

Z. Han, B. Li, D. Gong, P. Xie, L. Yu, Y. Wang, Y. Han, Y. Li, D. Prusky, G. Romanazzi et al., “Preharvest chitooligosaccharide spray alleviates chilling injury in harvested muskmelon fruit by regulating membrane lipid metabolism and activating antioxidant enzyme activity,” Postharvest Biology and Technology, vol. 204, p. 112452, 2023.

Z. Li, X. Xu, S. Xue, D. Gong, B. Wang, X. Zheng, P. Xie, Y. Bi, and D. Prusky, “Preharvest multiple sprays with chitosan promotes the synthesis and deposition of lignin at wounds of harvested muskmelons,” International Journal of Biological Macromolecules, vol. 206, pp. 167–174, 2022.

J. E. Martínez-Camacho, R. G. Guevara-González, E. Rico-García, E. G. Tovar-Pérez, and I. Torres-Pacheco, “Delayed senescence and marketability index preservation of blackberry fruit by preharvest application of chitosan and salicylic acid,” Frontiers in plant science, vol. 13, p. 796393, 2022.

J. M. Camacho, D. M. Sabogal, I. C. Valenzuela, and I. T. Pacheco, “Efecto de tratamientos precosecha en la reversio´n y contenido de antocianinas del fruto de zarzamora (rubus sp.),” Perspectivas de la Ciencia y la Tecnología, vol. 5, no. 9, pp. 11–18, 2022.

Y. Niu, L. Ye, Y. Wang, Y. Shi, Y. Liu, and A. Luo, “Improvement of storage quality of ‘hayward’kiwifruit by meja combined with sa treatment through activation of phenylpropane metabolism,” Scientia Horticulturae, vol. 321, p. 112354, 2023.

K. A. Marak, H. Mir, P. Singh, M. W. Siddiqui, T. Ranjan, D. R. Singh, M. H. Siddiqui, and M. Irfan, “Exogenous melatonin delays oxidative browning and improves postharvest quality of litchi fruits,” Scientia Horticulturae, vol. 322, p. 112408, 2023.

Y. Song, Y. Ren, Y. Xue, D. Lu, T. Yan, and J. He, “Putrescine (1, 4-diaminobutane) enhances antifungal activity in postharvest mango fruit against colletotrichum gloeosporioides through direct fungicidal and induced resistance mechanisms,” Pesticide Biochemistry and Physiology, p. 105581, 2023.

M. A. Khan, M. Azam, S. Ahmad, and M. Atiq, “Improvement of physicochemicals, antioxidant system and softening enzymes by postharvest l-arginine application leads to maintain persimmon fruit quality under low temperature storage,” Journal of Food Measurement and Characterization, pp. 1–14, 2023.

A. Njie, X. Dong, Q. Liu, C. Lu, X. Pan et al., “Melatonin treatment inhibits mango fruit (cv.‘guiqi’) softening by maintaining cell wall and reactive oxygen metabolisms during cold storage,” Postharvest Biology and Technology, vol. 205, p. 112500, 2023.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 Perspectivas de la Ciencia y la Tecnología