Abstract
This experimental research examines the effect of fluid inclusions (water, air and oil) on seismic wave propagation through a test bed loaded with highly compressible clay soil designed to replicate common seismic frequency parameters. The results demonstrate that fluids significantly change propagation characteristics: reducing wave velocity due to changes in medium stiffness while amplifying signal peaks, particularly with oil inclusions. The research reveals distinctive spectral patterns for each different fluid and helps to detect correlations between the contained fluid properties and wave propagation parameters. The test model developed here represents a worthwhile point of reference for evaluating seismic behavior of saturated soils, which provides practical applications for the assessment of ground stability within seismic zones and the characterization of hydrocarbon reservoirs, with particular relevance for those areas of high groundwater saturation. The results highlight the importance of accounting for fluid inclusions in predictive models for geotechnical risk assessment and geophysical exploration.
References
D. G. Aggelis y T. Shiotani, “Experimental study of surface wave propagation in strongly heterogeneous media”, The Journal of the Acoustical Society of America, vol. 122, núm. 5, p. 151-157, 2007, doi: 10.1121/1.2784151
G. O. Bogado y F. M. Francisca, “Shear wave propagation in residual soil-rigid inclusion mixtures”, Powder Technology, vol. 343, pp. 595-598, 2019, doi: 10.1016/j.powtec.2018.11.074
N. Agofack, S. Lozovyi y A. Bauer, “Effect of CO₂ on P- and S-wave velocities at seismic and ultrasonic frequencies”, International Journal of Greenhouse Gas Control, vol. 78, pp. 388-399, 2018. doi: 10.1016/j.ijggc.2018.09.010
U.S. Army Corps of Engineers (Washington, D.C., EUA, 1995), Geophysical Exploration for Engineering and Environmental Investigations (EM 1110-1-1802). [En línea]. Disponible: https://damtoolbox.org/wiki/Geophysical_Exploration_for_Engineering_and_Environmental_Investigations_(EM_1110-1-1802)
T. Cadoret, D. Marion y B. Zinszner “Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones”, Journal of Geophysical Research: Solid Earth, vol.B6, vol. 100, pp. 9789-9803, 1995, doi: 10.1029/95JB00757
R. Ciz, J. Toms y B. Gurevich, “Attenuation and dispersion of elastic waves in a poroelastic medium with spherical inclusions”, en Proceedings of the 3rd Biot Conference on Poromechanics, Univ. Oklahoma, AA. Balkema, pp. 201-207, 2005. doi: 10.1201/NOE0415380416.ch32
J. E. White, “Computed seismic speeds and attenuation in rocks with partial gas saturation”, Geophysics, vol. 40, pp. 224-232, 1975, doi: 10.1190/1.1440520
M. L. Batzle, D. H. Han y R. Hofmann, “Fluid mobility and frequency-dependent seismic velocity — Direct measurements”, Geophysics, vol. 71, pp.1-10, 2006, doi: 10.1190/1.2159053
M. B. Rapoport, L. I. Rapoport y V. I. Ryjkov, “Direct detection of oil and gas fields based on seismic inelasticity effect”, The Leading Edge, vol. 23, pp. 276-278, 2004, doi: 10.1190/1.1690901
M. Chapman, E. Liu y X. Y. Li, “The influence of fluid sensitive dispersion and attenuation on AVO analysis”, Geophysical Journal International, vol. 167, núm.1, pp. 89-105, 2006, doi:10.1111/j.1365-246X.2006.02919.x
B. Quintal, S. M. Schmalholz y Y. Y. Podladchikov, “Impact of fluid saturation on the reflection coefficient of a poroelastic layer”, Geophysics, vol. 76, pp. 1-12, 2011, doi: 10.1190/1.3553002
J. G. Rubino, D. R. Velis y M. D. Sacchi, “Numerical analysis of wave-induced fluid flow effects on seismic data: Application to monitoring of CO₂ storage at the Sleipner field”, Journal of Geophysical Research: Solid Earth, vol. 116, núm. B3, art. B03306, 2011, doi: 10.1029/2010JB007997
J. Paffenholz y H. Burkhardt, “Absorption and modulus measurements in the seismic frequency and strain range on partially saturated sedimentary rocks”, Journal of Geophysical Research: Solid Earth, vol. 94, núm. B7, pp. 9493-9507, 1989, doi: 10.1029/ jb094ib07p09493 [14] J. Behura, M. Batzle, R. Hofmann y J. Dorgan, “The shear properties of oil shales”, The Leading Edge, vol. 28, pp. 850-855, 2009, doi: 10.1190/1.3167788
K. A. Belibassakis, G. Arnaud, V. Rey y J. Touboul, “Propagation and scattering of waves by dense arrays of impenetrable cylinders in a waveguide”, Wave Motion, vol. 80, pp. 1-19, 2018, doi: 10.1016/j.wavemoti.2018.03.007
M. A. Biot, “General Theory of Three-Dimensional Consolidation”, Journal of Applied Physics, vol. 12, pp. 155-164, 1941, doi: 10.1063/1.1712886
D. L. Johnson, “Theory of frequency dependent acoustics in patchy-saturated porous media”, The Journal of the Acoustical Society of America, vol. 110, núm.2, pp. 682-694, 2001, doi: 10.1121/1.1381021
S. R. Pride y J. G. Berryman, “Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation”, Physical Review E, vol. 68, art. 036603, 2003, doi: 10.1103/PhysRevE.68.036603
T. M. Müller y B. Gurevich, “One-dimensional random patchy saturation model for velocity and attenuation in porous rocks”, Geophysics, vol. 69, pp. 1166-1172, 2004, doi: 10.1190/1.1801934
B. Vogelaar, D. Smeulders y J. Harris, “Exact expression for the effective acoustics of patchy-saturated rocks”, Geophysics, vol. 75, núm. 4, pp.87-96, 2010, doi: 10.1190/1.3463430
X. Liu, S. Greenhalgh y B. Zhou, “Scattering of plane transverse waves by spherical inclusions in a poroelastic medium”, Geophysical Journal International, vol. 176, núm.3, pp. 938-950, 2009, doi: 10.1111/j.1365-246X.2008.04026.x
S. Chapman, J. V. M. Borgomano, B. Quintal, S. M. Benson y J. Fortin, “Seismic Wave Attenuation and Dispersion Due to Partial Fluid Saturation: Direct Measurements and Numerical Simulations Based on X-aay CT”, Journal Geophysical Research: Solid Earth, vol. 126, núm. 4, 2021, doi: 10.1029/2021JB021643
N. Tisato, K.T. Spikes, N. Saxena y R. Hofmann, “Scattering and Frequency Effects on Ultrasonic Velocities of Carbonates”, Journal of Geophysics Research: Solid Earth, vol. 129, núm. 2, 2023, doi: 10.22541/essoar.167870433.38241636/v1
C. Sun, J. Fortin, G. Tang y S. Wang, “Prediction of dispersion and attenuation on the elastic wave velocities in partially saturated rock based on fluid distribution obtained from three-dimensional 3D micro-CT images”, Frontiers in Earth Science, vol. 11, 2023, doi: 10.3389/feart.2023.1267522
H. S. Sutiyoso, S. K. Sahoo, L. J. North, T. A. Minshull, I.H. Falcon Suarez y A. I. Best, “Laboratory measurements of water saturation effects on the acoustic velocity and attenuation of sand packs in the 1‒20 kHz frequency range”, Geophysical Prospecting, vol. 72, núm. 9, pp. 3316-3337, 2024, doi: 10.1111/1365-2478.13607
R. Ma, J. Ba, M. Lebedev, B. Gurevich y Y. Sun, “Effect of pore fluid on ultrasonic S-wave attenuation in partially saturated tight rocks”, International Journal of Rock Mechanics and Mining Sciences, vol. 147, art. 104910, 2021, doi: 10.1016/j.ijrmms.2021.104910
M.L. Pérez Rea, “Predicción de propiedades mecánicas y reológicas de suelos usando teoría de percolación”, Tesis de doctorado, Instituto Tecnológico y de Estudios Superiores de Monterrey, Estado de México, México, 2005.
PCB Piezotronics, “Products”, 2024. [En línea]. Disponible: https://www.pcb.com.
TIRA GmbH, “Vibration Test System”, 2024. [En línea]. Disponible: https://www.tiragmbh.de/fileadmin/inhalte/download/schwingprueftechnik/prospekte/EN/TIRA_selection_guide_01_2024.pdf
Analog Devices, “Products—ADXL103”, 2024. [En línea]. Disponible: https://www.analog.com/en/products/adxl103.html
National Instruments, “Support documentation— 63xx Models”, 2024. [En línea]. Disponible: https://www.ni.com/en/support/documentation/cable-accessory-guide/daq-multifunction-i-o-cable-accessory-compatibility/main-page---daq-multifunction-i-o-cable-and-accessory-compatibil/63xx-models.html

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Perspectivas de la Ciencia y la Tecnología

