Abstract
Antibiotic resistance is a growing global concern in public health, as it threatens to return us to an era where common bacterial infections could be fatal. Among the main causes of this resistance are the excessive and inappropriate use of antibiotics in medicine and agriculture. It is in this context that an alternative emerges: photodynamic therapy (PDT), which has arisen as a new option, utilizing principles of photophysics and photochemistry to treat various diseases. This manuscript provides an overview of PDT, covering its scientific fundamentals, mechanisms of action, and its effectiveness in the treatment of cancer, bacterial, fungal, and viral infections. Additionally, advances in photosensitizers and strategies to improve therapeutic selectivity and efficacy are discussed. PDT combines a photosensitizer, light, and oxygen to generate reactive oxygen species that induce cellular damage. Its application in oncology and dermatology, and its potential in antimicrobial therapies, demonstrate its versatility. Challenges in light and photosensitizer dosimetry are highlighted, along with technological innovations aimed at overcoming them. Research on cellular mechanics with optical tweezers and the development of nanoparticle-based photosensitizers are presented. These developments promise more effective and less invasive therapies, improving the treatment of various diseases.
References
S. Ulrich E., Fundamentals of photophysics, photochemistry and photobiology. 2014.
R. Ackroyd, C. Kelty, N. Brown, and M. Reed, “The History of Photodetection and Photodynamic Therapy,” Photochem. Photobiol., vol. 74, no. 5, p. 656, 2001, doi: 10.1562/0031-8655(2001)074<0656:thopap>2.0.co;2.
R. R. Allison, G. H. Downie, R. Cuenca, X. H. Hu, C. J. H. Childs, and C. H. Sibata, “Photosensitizers in clinical PDT,” Photodiagnosis Photodyn. Ther., vol. 1, no. 1, pp. 27–42, 2004, doi: 10.1016/S1572-1000(04)00007-9.
D. H. Sliney, “What is light? the visible spectrum and beyond,” Eye, vol. 30, no. 2, pp. 222–229, 2016, doi: 10.1038/eye.2015.252.
A. P. Castano, T. N. Demidova, and M. R. Hamblin, “Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization,” Photodiagnosis Photodyn. Ther., vol. 1, no. 4, pp. 279–293, Dec. 2004, doi: 10.1016/S1572-1000(05)00007-4.
A. M. Rkein and D. M. Ozog, “Photodynamic therapy,” Dermatol. Clin., vol. 32, no. 3, pp. 415–425, 2014, doi: 10.1016/j.det.2014.03.009.
G. K. Couto, F. K. Seixas, B. A. Iglesias, and T. Collares, “Perspectives of photodynamic therapy in biotechnology,” J. Photochem. Photobiol. B Biol., vol. 213, no. October, p. 112051, 2020, doi: 10.1016/j.jphotobiol.2020.112051.
J. Flórez, La Farmacología: concepto y objetivos. 1997. [Online]. Available: http://hdl.handle.net/123456789/29180
J. Morschhäuser, “Regulation of multidrug resistance in pathogenic fungi,” Fungal Genet. Biol., vol. 47, no. 2, pp. 94–106, Feb. 2010, doi: 10.1016/j.fgb.2009.08.002.
D. I. Loaiza-Toscuento, D. Vazquez-Dominguez, A. P. Texis-Espinosa, J. C. Ramírez-San-Juan, R. Ramos-García, and T. Spezzia-Mazzocco, “The Impact of Methylene Blue in Antimicrobial Photodynamic Therapy Against Different Candida Species and Its Synergy with Fluconazole,” Opt. Pura y Apl., vol. 57, no. 1, pp. 1–12, 2024, doi: 10.7149/OPA.57.1.51159.
A. Johansson, J. Axelsson, S. Andersson-Engels, and J. Swartling, “Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate,” Med. Phys., vol. 34, no. 11, pp. 4309–4321, 2007, doi: 10.1118/1.2790585.
C. Sheng, B. W. Pogue, E. Wang, J. E. Hutchins, and P. J. Hoopes, “Assessment of Photosensitizer Dosimetry and Tissue Damage Assay for Photodynamic Therapy in Advanced-stage Tumors¶,” Photochem. Photobiol., vol. 79, no. 6, p. 520, 2004, doi: 10.1562/mu-03-33.1.
J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics, vol. 4, no. 11–12, pp. 773–787, 2011, doi: 10.1002/jbio.201100062.
V. V Tuchin, “5. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis,” J. Biomed. Photonics Eng, vol. 1, no. 1, pp. 495–515, 2015.
J. A. Kim, D. J. Wales, and G. Z. Yang, “Optical spectroscopy for in vivo medical diagnosis — A review of the state of the art and future perspectives,” Prog. Biomed. Eng., vol. 2, no. 4, 2020, doi: 10.1088/2516-1091/abaaa3.
G. Gunaydin, M. E. Gedik, and S. Ayan, “Photodynamic Therapy—Current Limitations and Novel Approaches,” Front. Chem., vol. 9, no. June, pp. 1–25, 2021, doi: 10.3389/fchem.2021.691697.
G. Thenuwara, J. Curtin, and F. Tian, “Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review,” Sensors, vol. 23, no. 24, pp. 1–47, 2023, doi: 10.3390/s23249842.
B. Liu, T. J. Farrell, and M. S. Patterson, “A dynamic model for ALA-PDT of skin: Simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen,” Phys. Med. Biol., vol. 55, no. 19, pp. 5913–5932, 2010, doi: 10.1088/0031-9155/55/19/019.
J. Li, S. C. Warren-Smith, R. A. McLaughlin, and H. Ebendorff-Heidepriem, “Single-fiber probes for combined sensing and imaging in biological tissue: recent developments and prospects,” Biomed. Opt. Express, vol. 15, no. 4, p. 2392, 2024, doi: 10.1364/boe.517920.
H. Huang, R. D. Kamm, and R. T. Lee, “Cell mechanics and mechanotransduction: Pathways, probes, and physiology,” Am. J. Physiol. - Cell Physiol., vol. 287, no. 1 56-1, pp. 1–11, 2004, doi: 10.1152/ajpcell.00559.2003.
C. T. Mierke, “Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction,” Front. Cell Dev. Biol., vol. 10, no. February, pp. 1–58, 2022, doi: 10.3389/fcell.2022.789841.
C. Zhu, G. Bao, and N. Wang, “Cell mechanics: Mechanical response, cell adhesion, and molecular deformation,” Annu. Rev. Biomed. Eng., vol. 2, no. 2000, pp. 189–226, 2000, doi: 10.1146/annurev.bioeng.2.1.189.
D. Kessel and N. L. Oleinick, “Cell Death Pathways Associated with Photodynamic Therapy: An Update,” Photochem. Photobiol., vol. 94, no. 2, pp. 213–218, 2018, doi: 10.1111/php.12857.
K. Volke, I. Ricárdez, and R. Ramos, “Pinzas ópticas: las delicadas manos de la luz,” Rev. Cienc., p. 25, 2007, [Online]. Available: https://inaoe.repositorioinstitucional.mx/jspui/handle/1009/944
G. Pesce, P. H. Jones, O. M. Maragò, and G. Volpe, Optical tweezers: theory and practice, vol. 135, no. 12. Springer Berlin Heidelberg, 2020. doi: 10.1140/epjp/s13360-020-00843-5.
L. M. Baltazar, A. Ray, D. A. Santos, P. S. Cisalpino, A. J. Friedman, and J. D. Nosanchuk, “Antimicrobial photodynamic therapy: An effective alternative approach to control fungal infections,” Front. Microbiol., vol. 6, no. MAR, pp. 1–11, 2015, doi: 10.3389/fmicb.2015.00202.
J. Ríos et al., “Terapia fotodinámica antimicrobiana sobre Candida albicans en superficies acrílicas de prótesis dentales. Estudio in vitro,” Rev. Eugenio Espejo, vol. 16, no. 3, pp. 72–82, 2022, doi: 10.37135/ee.04.15.08.
L. do Prado-Silva, G. T. P. Brancini, G. Ú. L. Braga, X. Liao, T. Ding, and A. S. Sant’Ana, “Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review,” Food Control, vol. 132, p. 108527, 2022, doi: 10.1016/j.foodcont.2021.108527.
D. B. Tada and M. S. Baptista, “Photosensitizing nanoparticles and the modulation of ROS generation,” vol. 3, no. May, pp. 1–14, 2015, doi: 10.3389/fchem.2015.00033.
J. Karges, D. Díaz-García, S. Prashar, S. Gómez-Ruiz, and G. Gasser, “Ru(II) Polypyridine Complex-Functionalized Mesoporous Silica Nanoparticles as Photosensitizers for Cancer Targeted Photodynamic Therapy,” ACS Appl. Bio Mater., vol. 4, no. 5, pp. 4394–4405, 2021, doi: 10.1021/acsabm.1c00151.
A. Bekmukhametova, H. Ruprai, J. M. Hook, D. Mawad, J. Houang, and A. Lauto, “Photodynamic therapy with nanoparticles to combat microbial infection and resistance,” Nanoscale, vol. 12, no. 41. pp. 21034–21059, 2020. doi: 10.1039/d0nr04540c.
R. Lozano-Rosas, R. Ramos-Garcia, M. F. Salazar-Morales, M. J. Robles-Águila, and T. Spezzia-Mazzocco, “Evaluation of antifungal activity of visible light-activated doped TiO2 nanoparticles,” Photochem. Photobiol. Sci., no. 0123456789, Apr. 2024, doi: 10.1007/s43630-024-00557-y.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Perspectivas de la Ciencia y la Tecnología