Abstract
In the transportation sector, the aviation industry has taken the lead in the search for new alternatives to help mitigate its contribution to climate change. For this reason, the aviation sector has launched initiatives to promote sustainable development, among which sustainable aviation fuel (SAF) stands out. SAF can be obtained from different types of biomass through various processing routes. Among them, the most direct processing route is the hydrotreating of fats and oils. However, globally, the availability of triglyceride-rich feedstocks is low compared to lignocellulosic materials. The latter are attractive due to their abundance and low cost but cannot be hydroprocessed directly due to their low lipid content. However, a biological treatment that allows the lignocellulosic material to be partially transformed into fats has been explored; the latter can be used in hydrotreatment. In this context, the biological treatment of lignocellulosic wastes by breeding black soldier fly has been proposed as an alternative to generate fats that can be used to produce sustainable aviation fuel. Thus, the present work focuses on a review of sustainable aviation fuel production from waste feedstocks, particularly emphasising the use of black soldier fly larvae fats.
References
IEA, “Executive summary – World Energy Outlook 2022 – Analysis,” IEA. 2022, Accessed: Sep. 07, 2023. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2022/executive-summary.
International Energy Agency, “International Energy Agency (IEA) World Energy Outlook 2022,” Https://Www.Iea.Org/Reports/World-Energy-Outlook-2022/Executive-Summary, p. 524, 2022, [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2022.
International Air Transport Association, “Industry statistics,” 2023.
J. Yang, Z. Xin, Q. (Sophia) He, K. Corscadden, and H. Niu, “An overview on performance characteristics of bio-jet fuels,” Fuel, vol. 237, no. August 2018, pp. 916–936, 2019, doi: 10.1016/j.fuel.2018.10.079.
C. Gutiérrez Antonio, A. G. Romero-Izquierdo, F. I. Gomez Castro, and S. Hernandez, PRODUCTION PROCESSES OF RENEWABLE AVIATION. 2021.
N. Yilmaz and A. Atmanli, “Sustainable alternative fuels in aviation,” Energy, vol. 140, pp. 1378–1386, 2017, doi: 10.1016/j.energy.2017.07.077.
C. A. A. F. I. CAAFI, “CAAFI - Focus Area - Fuel Qualification,” Fuel Qualification, 2020. https://www.caafi.org/focus_areas/fuel_qualification.html (accessed Sep. 19, 2023).
H. Wei, W. Liu, X. Chen, Q. Yang, J. Li, and H. Chen, “Renewable bio-jet fuel production for aviation: A review,” Fuel, vol. 254, no. May, 2019, doi: 10.1016/j.fuel.2019.06.007.
A. R. De Toni, L. R. Cancino, A. A. M. Oliveira, E. Oliveira, and M. I. Rocha, “Conventional and alternative aviation fuels: An overview on composition, properties and aircraft engine test,” 15th Brazilian Congr. Therm. Sci. Eng., no. November 10-13, pp. 1–8, 2014.
A. L. Moreno-Gómez, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Modelling, simulation and intensification of the hydroprocessing of chicken fat to produce renewable aviation fuel,” Chem. Eng. Process. - Process Intensif., vol. 159, no. xxxx, 2021, doi: 10.1016/j.cep.2020.108250.
P. Mäki-Arvela, M. Martínez-Klimov, and D. Y. Murzin, “Hydroconversion of fatty acids and vegetable oils for production of jet fuels,” Fuel, vol. 306, no. August, 2021, doi: 10.1016/j.fuel.2021.121673.
F. I. Gómez-Castro, C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, M. M. May-Vázquez, and S. Hernández, “Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends,” Renew. Sustain. Energy Rev., vol. 184, no. October 2022, 2023, doi: 10.1016/j.rser.2023.113580.
A. L. Moreno‐Gómez, C. Gutiérrez‐Antonio, F. I. Gómez‐Castro, and S. Hernández, “Production of Biojet Fuel from Waste Raw Materials,” Process Syst. Eng. Biofuels Dev., pp. 149–171, 2020, doi: 10.1002/9781119582694.ch6.
C. Gutiérrez-Antonio, F. I. Gómez-Castro, J. A. de Lira-Flores, and S. Hernández, “A review on the production processes of renewable jet fuel,” Renew. Sustain. Energy Rev., vol. 79, no. October 2016, pp. 709–729, 2017, doi: 10.1016/j.rser.2017.05.108.
M. T. Carrasco-Suárez, A. G. Romero-Izquierdo, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Production of renewable aviation fuel by waste cooking oil processing in a biorefinery scheme: Intensification of the purification zone,” Chem. Eng. Process. - Process Intensif., vol. 181, no. March, 2022, doi: 10.1016/j.cep.2022.109103.
P. Muanruksa, J. Winterburn, and P. Kaewkannetra, “Biojet fuel production from waste of palm oil mill effluent through enzymatic hydrolysis and decarboxylation,” Catalysts, vol. 11, no. 1, pp. 1–10, 2021, doi: 10.3390/catal11010078.
Y. K. Chen, C. H. Lin, and W. C. Wang, “The conversion of biomass into renewable jet fuel,” Energy, vol. 201, p. 117655, 2020, doi: 10.1016/j.energy.2020.117655.
M. Li et al., “A novel catalyst with variable active sites for the direct hydrogenation of waste oils into jet fuel,” Appl. Catal. B Environ., vol. 260, no. August 2019, p. 118114, 2020, doi: 10.1016/j.apcatb.2019.118114.
X. Zhang et al., “One-step preparation of biological aviation kerosene by catalytic hydrogenation of waste lard over Pt/SAPO-11,” IOP Conf. Ser. Earth Environ. Sci., vol. 93, no. 1, 2017, doi: 10.1088/1755-1315/93/1/012003.
X. Zhao, L. Wei, J. Julson, Q. Qiao, A. Dubey, and G. Anderson, “Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel,” N. Biotechnol., vol. 32, no. 2, pp. 300–312, 2015, doi: 10.1016/j.nbt.2015.01.004.
T. G. dos S. Souza, B. L. P. Santos, A. M. A. Santos, A. M. G. P. de Souza, J. Correia de Melo, and A. Wisniewski, “Thermal and catalytic micropyrolysis for conversion of cottonseed oil dregs to produce biokerosene,” J. Anal. Appl. Pyrolysis, vol. 129, no. April, pp. 21–28, 2018, doi: 10.1016/j.jaap.2017.12.010.
A. G. Romero-Izquierdo, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Hydrotreating of Triglyceride Feedstock to Produce Renewable Aviation Fuel,” Recent Innov. Chem. Eng. (Formerly Recent Patents Chem. Eng., vol. 11, no. 2, pp. 77–89, 2018, doi: 10.2174/2405520411666180501110716.
V. Verma, A. Mishra, M. Anand, S. A. Farooqui, and A. K. Sinha, “Catalytic hydroprocessing of waste cooking oil for the production of drop-in aviation fuel and optimization for improving jet biofuel quality in a fixed bed reactor,” Fuel, vol. 333, no. P1, p. 126348, 2023, doi: 10.1016/j.fuel.2022.126348.
N. Vela-García, D. Bolonio, M. J. García-Martínez, M. F. Ortega, D. Almeida Streitwieser, and L. Canoira, “Biojet fuel production from oleaginous crop residues: thermoeconomic, life cycle and flight performance analysis,” Energy Convers. Manag., vol. 244, p. 114534, 2021, doi: 10.1016/j.enconman.2021.114534.
M. Meneguz, L. Gasco, and J. K. Tomberlin, “Impact of pH and feeding system on BSF larval development,” PLoS One, vol. 13, no. 8, pp. 1–15, 2018.
V. Caltzontzin-Rabell, C. Gutiérrez-Antonio, J. F. García-Trejo, and A. A. Feregrino-Pérez, “Effect of whey addition on the growth and proximal composition of black soldier fly (Hermetia illucens) larvae,” XVII Congr. Int. Ing., no. May, pp. 1–6, 2022.
D. Bruno et al., “An in-depth description of head morphology and mouthparts in larvae of the black soldier fly Hermetia illucens,” Arthropod Struct. Dev., vol. 58, p. 100969, 2020, doi: 10.1016/j.asd.2020.100969.
M. Fredsgaard, L. S. S. Hulkko, T. Chaturvedi, and M. H. Thomsen, “Process simulation and techno-economic assessment of Salicornia sp. based jet fuel refinery through Hermetia illucens sugars-to-lipids conversion and HEFA route,” Biomass and Bioenergy, vol. 150, no. January, p. 106142, 2021, doi: 10.1016/j.biombioe.2021.106142.
W. Feng et al., “Polymer functionalization of biochar-based heterogeneous catalyst with acid-base bifunctional catalytic activity for conversion of the insect lipid into biodiesel,” Arab. J. Chem., vol. 16, no. 7, p. 104814, 2023, doi: 10.1016/j.arabjc.2023.104814.
Q. Li, L. Zheng, N. Qiu, H. Cai, J. K. Tomberlin, and Z. Yu, “Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production,” Waste Manag., vol. 31, no. 6, pp. 1316–1320, 2011, doi: 10.1016/j.wasman.2011.01.005.
D. Purkayastha and S. Sarkar, “Sustainable waste management using black soldier fly larva: a review,” Int. J. Environ. Sci. Technol., vol. 19, no. 12, pp. 12701–12726, 2021, doi: 10.1007/s13762-021-03524-7.
C. S. Liew et al., “Low-temperature thermal pre-treated sewage sludge for feeding of black soldier fly (Hermetia illucens) larvae: Protein, lipid and biodiesel profile and characterization,” Renew. Sustain. Energy Rev., vol. 178, no. October 2022, p. 113241, 2023, doi: 10.1016/j.rser.2023.113241.
M. V. Oviedo, J. F. García, and C. Gutierrez, “Mosca soldado negra: eslabón perdido en la cadena de revalorización de residuos orgánicos,” Ciencia, vol. 73, pp. 52–59, 2022, [Online]. Available: https://www.revistaciencia.amc.edu.mx/images/revista/73_3/PDF/09_73_3_1304.pdf.
S. Jung et al., “Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification,” Energy, vol. 238, 2022, doi: 10.1016/j.energy.2021.121700.
E. K. Sitepu, S. Perangin-angin, G. J. Ginting, S. Machmudah, R. N. Sari, and J. B. Tarigan, “Controlled crushing device-intensified direct biodiesel production of Black Soldier Fly larvae,” Heliyon, vol. 9, no. 6, p. e16402, 2023, doi: 10.1016/j.heliyon.2023.e16402.
V. Caltzontzin-Rabell, A. Escobar-Ortiz, C. Gutiérrez-Antonio, A. A. Feregrino-Pérez, and J. F. García-Trejo, “Revaluation process of cheese whey through the cultivation of black soldier fly larvae (Hermetia illucens ),” no. January 2024, pp. 1–12, 2024, doi: 10.1002/eng2.12853.
J. Hadj Saadoun et al., “Lipid profile and growth of black soldier flies (Hermetia illucens, Stratiomyidae) reared on by-products from different food chains,” J. Sci. Food Agric., vol. 100, no. 9, pp. 3648–3657, 2020, doi: 10.1002/jsfa.10397.
M. Meneguz et al., “Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae,” J. Sci. Food Agric., vol. 98, no. 15, pp. 5776–5784, 2018, doi: 10.1002/jsfa.9127.
T. Sprangers et al., “Nutritional composition of black soldier fly (,” J. Sci. Food Agric., no. 97, pp. 2594–2600, 2017.
G. Arabzadeh et al., “Diet Composition Influences Growth Performance, Bioconversion of Black Soldier Fly Larvae: Agronomic Value and In Vitro Biofungicidal Activity of Derived Frass,” Agronomy, vol. 12, no. 8, 2022, doi: 10.3390/agronomy12081765.
E. M. Nyakeri, H. J. O. Ogola, M. A. Ayieko, and F. A. Amimo, “Valorisation of organic waste material: Growth performance of wild black soldier fly larvae (Hermetia illucens) reared on different organic wastes,” J. Insects as Food Feed, vol. 3, no. 3, pp. 193–202, 2017, doi: 10.3920/JIFF2017.0004.
C. Ceccotti et al., “New value from food and industrial wastes – Bioaccumulation of omega-3 fatty acids from an oleaginous microbial biomass paired with a brewery by-product using black soldier fly (Hermetia illucens) larvae,” Waste Manag., vol. 143, no. December 2021, pp. 95–104, 2022, doi: 10.1016/j.wasman.2022.02.029.
L. Bava et al., “Rearing of hermetia illucens on different organic by-products: Influence on growth, waste reduction, and environmental impact,” Animals, vol. 9, no. 6, 2019, doi: 10.3390/ani9060289.
F. Manzano-Agugliaro, M. J. Sanchez-Muros, F. G. Barroso, A. Martínez-Sánchez, S. Rojo, and C. Pérez-Bañón, “Insects for biodiesel production,” Renew. Sustain. Energy Rev., vol. 16, no. 6, pp. 3744–3753, 2012, doi: 10.1016/j.rser.2012.03.017.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2025 Perspectivas de la Ciencia y la Tecnología