Perovskites and the Tolerance Factor: The Science Behind the Innovation
Perovskitas y el Factor de Tolerancia_en
PDF (Spanish)
HTML (Spanish)

Keywords

perovskites
tolerance factor
structure-stability
solar cells
catalysts
innovation

How to Cite

[1]
M. A. Cortés Cuán, R. Nava Mendoza, C. M. Cortés Romero, and M. de los Ángeles Cuán Hernández, “Perovskites and the Tolerance Factor: The Science Behind the Innovation”, PCT, vol. 8, no. 14, pp. 22–30, Jan. 2025, doi: 10.61820/pct.v8i14.1599.

Abstract

This article delves into the essential role of the tolerance factor in perovskites and how understanding this concept has driven significant innovations in nanomaterials. It examines the theoretical principles that define perovskites and the tolerance factor, a crucial parameter for their structural and stability attributes. Key discoveries and research are highlighted, demonstrating how these have enhanced our knowledge of the physical and electronic properties of perovskites. The tolerance factor elucidates the correlation between crystal structure and chemical composition based on the ionic radius of constituent elements. This factor can be adjusted to design perovskites with tailored properties and functionalities for various applications. Additionally, the article spotlights significant practical applications and technological advancements enabled by this scientific insight, such as improved efficiency and stability of perovskites, with potential impacts on diverse industrial applications. This multidisciplinary perspective underscores the critical role of scientific research in driving innovation in materials technology.

PDF (Spanish)
HTML (Spanish)

References

. (2023) Japan Government. Disponible en: Japan.go.jp. la liga completa: https://www.japan.go.jp/kizuna/_userdata/pdf/2023/autumn2023/japans_long-planned_photovoltaics.pdf#:~:text=URL%3A%20https%3A%2F%2Fwww.japan.go.jp%2Fkizuna%2F_userdata%2Fpdf%2F2023%2Fautumn2023%2Fjapans_long

. (2023) Panasonic Holdings Corporation. Disponible en: https://news.panasonic.com/global/press/en230831-2. 2

. (2023) Panasonic Holdings Corporation. Disponible en: https://www.solarbeglobal.com/japanese-enterprise-is-working-on-new-solar-cells-for-automotive-application

. Ahmed, D. S., Mohammed, M. K. A., & Majeed, S. M., Green Synthesis of Eco-Friendly Graphene Quantum Dots for Highly Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2020.

. Arul, N. S., & Nithya, V. D. (Eds.)., Revolution of Perovskite. Materials Horizons: From Nature to Nanomaterials, 2020.

. Bhalla, A. S., Guo, R., & Roy, R., The perovskite structure—a review of its role in ceramic science and technology. Materials Research Innovations, 4(1), 3–26, 2000.

. Cai, J., Laubernds, K., Galasso, F. S., Suib, S. L., Preparation Method and Cation Dopant Effects on the Particle Size and Properties of BaCeO3 Perovskites: Journal of The American Ceramic Society. 2729–2735, 2005

. Glazer, A. M., Perovskites modern and ancient. By Roger H. Mitchell. Thunder Bay, Ontario: Almaz Press, 1075-1075, 2002.

. Ishihara, T., Structure and Properties of Perovskite Oxides. Fuel Cells and Hydrogen Energy, 1–16, 2009.

. Katz, E. A., Perovskite: Name Puzzle and German‐Russian Odyssey of Discovery. Helvetica Chimica Acta, 2020.

. Mitzi, D. B., Feild, C. A., Harrison, W. T. A., & Guloy, A. M., Conducting tin halides with a layered organic-based perovskite structure. Nature, 369(6480), 467-469, 1995.

. Moure, C., & Peña, O., Recent advances in perovskites: Processing and properties. Progress in Solid State Chemistry, 43(4), 123–148, 2015.

. Naciones Unidas. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Disponible de https://sdgs.un.org/goals

. Park, H., Mall, R., Alharbi, F. H., Sanvito, S., Tabet, N., Bensmail, H., & El-Mellouhi, F., Learn and Match Molecular Cations for Perovskites. The Journal of Physical Chemistry A, 2019.

. Peña, M. A., & Fierro, J. L. G. Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews, 101(7), 1981–2018, 2001.

. Royer, S., Duprez, D., Can, F., Courtois, X., Batiot-Dupeyrat, C., Laassiri, S., & Alamdari, H., Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chemical Reviews, 114(20), 2014.

. Smith, J. A., & Johnson, M. L. Crystal phases of perovskites and their properties. Journal of Materials Science, 35(12), 4567-4578, 2000.

. Suresh Kumar, N., & Chandra Babu Naidu, K., A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 7(5), 940–956, 2021.

. Wang, Z.L., Kang, Z.C., Perovskite and Related Structure Systems. In: Functional and Smart Materials. Springer, Boston, MA, 1998.

. Woodward, P. M., Octahedral Tilting in Perovskites. I. Geometrical Considerations. Acta Crystallographica Section B: Structural Science, 53(1), 32-43, 1997.

. Zhao, X., & Zhu, Y., Effect of A-site cation size on the structure and dielectric properties of rare earth aluminates. Journal of the American Ceramic Society, 97(1), 246-252, 2014.

. Zhao, Y., & Zhu, K., Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 45(3), 655–689, 2016.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Perspectivas de la Ciencia y la Tecnología