Current Perspectives on Hydrogen Production: A Focus on Photocatalysis and Its Advances
Perspectivas actuales en la producción de hidrógeno_en
PDF (Spanish)
HTML (Spanish)

Keywords

photocatalysis
semiconductors
hydrogen
electron-hole pair
photocalaytic efficiency
perovskites

How to Cite

[1]
C. D. Constantino Robles, R. . Nava Mendoza, and M. de los Ángeles Cuán Hernández, “Current Perspectives on Hydrogen Production: A Focus on Photocatalysis and Its Advances”, PCT, vol. 8, no. 14, pp. 6–21, Jan. 2025, doi: 10.61820/pct.v8i14.1597.

Abstract

Hydrogen is considered a viable solution in the transition to cleaner and more sustainable energy sources. Its potential as a versatile and non-polluting fuel makes it a promising resource for reducing dependence on fossil fuels. Currently there are several processes to obtain hydrogen, however, some of these processes generate polluting gas emissions, being natural gas the main process to obtain hydrogen worldwide. An alternative method involves the use of photocatalytic semiconductor materials, which harness solar energy to catalyze the splitting of water molecules, producing oxygen and hydrogen. These materials work by absorbing sunlight, triggering a series of chemical reactions to break down water and release hydrogen. Although photocatalytic semiconductors have great potential, they still face application challenges. However, continuous advances in research and development are improving the efficiency and stability of these materials. This technology offers a sustainable and renewable pathway for hydrogen production, using solar energy as the primary source. The present research includes an overview of the methods for obtaining hydrogen, with emphasis on the photocatalysis process, which involves the implementation of photocatalytic semiconductor materials. It also provides a brief description of some investigations of photocatalytic materials for hydrogen production.

PDF (Spanish)
HTML (Spanish)

References

- J. A. Turner, "A Realizable Renewable Energy Future," Science, vol. 305, no. 5686, pp. 972-974, 2004.

- G. A. Rivera-Vargas, Y. Matsumoto-Kuwabara, y R. Baquero-Parra, "Análisis para la obtención de hidrógeno a partir de biogás proveniente de la fermentación de bebidas naturales," Ingeniería, Investigación y Tecnología, vol. 17, no. 2, pp. 251-256, 2016.

- A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature, vol. 238, no. 5358, pp. 37-38, 1972.

- R. S. Dirzo and R. S. Casarín, "Combustible hidrógeno para el ciclo Rankine," Educ. Quím., vol. 20, no. 2, pp. 176-181, 2009

- Q. Wang et al., "Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%," Nature Materials, vol. 15, no. 6, pp. 611-615, 2016.

- X. Chen, S. Shen, L. Guo, y S. S. Mao, "Semiconductor-based photocatalytic hydrogen generation," Chemical Reviews, vol. 110, no. 11, pp. 6503-6570, 2010.

- L. F. G. Giraldo, E. A. M. Franco, and J. J. S. Arango, "La fotocatálisis como alternativa para el tratamiento de aguas residuales," Revista Lasallista de Investigación, vol. 1, no. 1, pp. 83-92, 2004

- Hernández Fernández, "Hidrógeno verde y su almacenamiento energético: Estado del arte," 2023.

- P. Porto Mato, "Descarbonización del sector del transporte en España con el hidrógeno verde," 2021.

- J.I. Linares Hurtado and B.Y. Moratilla Sora, El hidrógeno y la energía, Madrid: Asociacion Nacional de Ingenieros del ICAI, 2007

- International Energy Agency (IEA), "Global Hydrogen Review 2023," 2023.

-Hurtado, José Ignacio Linares, and Beatriz Yolanda Moratilla Soria. El hidrógeno y la energía. Asociación Nacional de Ingenieros del ICAI, 2007.

- M. Johnson and H. Lee, "Advances in biomass pyrolysis for energy production: A comprehensive review," Energy & Fuels, vol. 34, no. 5, pp. 965-985, 2020. doi: 10.1021/acs.energyfuels.0b00256.

- M. Johnson and H. Lee, "Recent advances in thermochemical decomposition of biomass," Journal of Thermal Analysis and Calorimetry, vol. 134, no. 3, pp. 1237-1256, 2020. doi: 10.1007/s10973-020-09234-x.

- M. Thompson and R. Lee, "Photolytic processes in environmental science," Journal of Environmental Chemistry, vol. 28, no. 2, pp. 234-250, 2020. doi: 10.1016/j.jenvchem.2020.05.004.

- J. D. Smith and J. A. Doe, "Advances in photobiological hydrogen production using microalgae and bacteria," Journal of Renewable Energy, vol. 58, no. 4, pp. 752-769, 2022, doi: 10.1016/j.renene.2021.12.034.

- J. D. Smith and J. A. Doe, "Advances in photobiological hydrogen production using microalgae and bacteria," Journal of Renewable Energy, vol. 58, no. 4, pp. 752-769, 2022, doi: 10.1016/j.renene.2021.12.034.

- K. Jiménez-Rangel, J. E. Samaniego-Benítez, L. Lartundo-Rojas, H. A. Calderón, and A. Mantilla, "Ternary g-C3N4/NiOOH/Ag nanocomposite photocatalyst with efficient charges separation and high activity for H2 production," Fuel, vol. 280, p. 118672, 2020.

- J. D. B. Ruiz, "Producción de hidrógeno e hidrocarburos de cadena corta renovables mediante fotocatálisis," 2023.

-M. Trejo, "Síntesis de fotocatalizadores soportados de óxido de tungsteno por el método de sol-gel y su aplicación en la degradación de colorantes," Tesis de maestría, CICATA-Querétaro, Querétaro, México, 2019.

- R. Candal et al., "Semiconductores con actividad fotocatalítica," en Título del libro, ed. por Nombre del Editor (Ciudad: Editorial, 2005), cap. 4, pp. 79-101

- Y. Jiménez-Flores, K. Jiménez-Rangel, J. E. Samaniego-Benítez, L. Lartundo-Rojas, H. A. Calderón, R. Gómez, y A. Mantilla, "Novelty g-C3N4/HAp composite as highly effective photocatalyst for Cr (VI) photoreduction," Catalysis Today, vol. 388, pp. 168-175, 2022.

- Y. W. Teh, M. K. T. Chee, X. Y. Kong, S. T. Yong, y S. P. Chai, "An insight into perovskite-based photocatalysts for artificial photosynthesis," Sustainable Energy and Fuels, vol. 4, no. 3, pp. 973–984, 2020. https://doi.org/10.1039/c9se00526a

- R. E. Cohen, "Origin of ferroelectricity in perovskite oxides," Nature, vol. 358, no. 6382, pp. 136-138, 1992, doi:10.1038/358136a0.

- Y. Zhang, W. Xu, B. Zhang, J. Xu, y G. Zhu, "Enhanced photocatalytic performance of TiO2 loaded with Ag nanoparticles under visible light irradiation," Journal of Materials Science: Materials in Electronics, vol. 29, no. 10, pp. 8233-8240, 2018, doi: 10.1007/s10854-018-8782-3.

- J. C. Duran A. and E. A., "Revista interdisciplinaria en nanociencias y nanotecnología," Revista interdisciplinaria en nanociencia y nanotecnología, 2020. DOI: 10.22201/ceiich.24485691e.2015.14.52510

- F. E. Ahmed, R. Hashaikeh, y N. Hilal, "Solar powered desalination – Technology, energy and future outlook," Desalination, vol. 453, pp. 54–76, octubre 2018. https://doi.org/10.1016/j.desal.2018.12.002

- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, "Understanding TiO2 photocatalysis: mechanisms and materials," Chem. Rev., vol. 114, pp. 9919–9986, 2014. https://doi.org/10.1021/cr5001892

- A.R. Khataee and M.B. Kasiri, "Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes," J. Mol. Catal. A Chem., vol. 328, pp. 8–26, 2010. https://doi.org/10.1016/j.molcata.2010.05.023

- Q. Guo, C. Zhou, Z. Ma, and X. Yang, "Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges," Adv. Mater., vol. 1901997, 2019. https://doi.org/10.1002/adma.201901997.

- Z. Li, X. Meng, Z. Zhang, "Recent development on MoS2-based photocatalysis: a review," J. Photochem. Photobiol. C Photochem. Rev., vol. 35, pp. 39–55, 2018. https://doi.org/10.1016/j.jphotochemrev.2017.12.002.

- L. Wang, L. Wang, K. Zhao, D. Cheng, W. Yu, J. Li, and F. Shi, "Hydrogen production performance of active Ce/N co-doped SrTiO3 for photocatalytic water splitting," International Journal of Hydrogen Energy, vol. 47, no. 92, pp. 39047-39057, 2022.

- Z. Li et al., "Interface redox-induced synthesis of SrTiO3/α-Fe2O3 for much improved hydrogen production," Journal of Alloys and Compounds, vol. 963, p. 171189, 2023.

- H. Bentour, K. Belasfar, M. Boujnah, M. El Yadari, A. Benyoussef, y A. El Kenz, "DFT study of Se/Mn and Te/Mn codoped SrTiO3 for visible light-driven photocatlytic hydrogen production," Optical Materials, vol. 129, p. 112431, 2022.

- L. A. G. Efrain Vento-Lujano, “Defect-induced modification of band structure by the insertion of Ce3+ and Ce4+ in SrTiO3: A high-performance sunlight-driven photocatalyst”, ELSERVIER, 2021.

- J. E. Samaniego-Benitez, K. Jimenez-Rangel, L. Lartundo-Rojas, A. García-García, y A. Mantilla, "Enhanced photocatalytic H2 production over g-C3N4/NiS hybrid photocatalyst," Materials Letters, vol. 290, p. 129476, 2021. https://doi.org/10.1016/j.matlet.2021.129476

- H. Zhang, P. Zhang, and X. Wang, "Semiconductor materials for solar hydrogen production: A review," Journal of Materials Chemistry A, vol. 8, no. 10, pp. 4850-4878, 2020. [Online]. Available: https://doi.org/10.1039/D0TA00035H

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Perspectivas de la Ciencia y la Tecnología