Insects as food and in the development of sustainable agriculture
agri-15
PDF (Spanish)

Keywords

proteínas
frass de insecto
bioestimulante
fertilizante

How to Cite

[1]
R. Guzmán Cruz, E. A. Ferruzca Campos, and R. G. Guevara González, “Insects as food and in the development of sustainable agriculture”, PCT, pp. 272–292, Mar. 2024, doi: 10.61820/pct.vi.1093.

Abstract

The population growth in recent years has significant implications for food security due to the increasing demand for food. Therefore, exploring alternative options for producing high-quality, nutritionally rich food for both human and animal consumption is important. In addition, insect waste or frass can be utilized as a source of fertilizer or bio-stimulant in crops due to its high nitrogen content. Thus, the objective of this review is to systematize information on insect production as an alternative source of protein for human and animal consumption, as well as to contribute to the search for organic sources of nutrients for the soil through the use of insect waste (frass) obtained during their production as a bio-stimulant, elicitor, or fertilizer. This contributes to the development of sustainable agriculture. Due to the advantages of insect production as a potential source of protein and nutrients, significant opportunities for growth are opening up in the industrial sector through the production of food for human and animal consumption. This sustainable alternative contributes to food security. Moreover, the agricultural sector benefits from utilizing insect frass as a byproduct, serving as a bio-stimulant, organic fertilizer, or pesticide substitute, promoting plant growth and increasing their tolerance to abiotic and biotic stresses.

PDF (Spanish)

References

(2023) “Peace, dignity and equality on a healthy planet”. United Nations. [Online]. Available: https://www.un.org/en/global-issues/population.

(2019) FAO. Ganadería sostenible y cambio climático en América Latina. Rome. [Online]. Available: http://www. fao.org/americas/prioridades/ganaderia-sostenible/es/

E. Lindgren, F. Harris, A.D. Dangour, A. Gasparatos, M. Hiramatsu, F. Javadi, B. Loken, T. Murakami, P. Scheelbeek, A. Haines, “Sustainable food systems-a health perspective”. Sustain Sci., 13:1505–1517. 2018.

M.C. Vázquez-Hernández, I. Parola-Contreras, L.M. Montoya-Gómez, I. Torres-Pacheco, D. Schwarz, R.G. Guevara-González, “Eustressors: Chemical and physical stress factors used to enhance vegetables production”, Scientia Horticulturae, Vol. 250, pp 223-229. 2019.

J.H. Lee, T. K. Kim, C.H. Jeong, H.I. Yong, J.Y. Cha, B.K. Kim, Y.S. Choi. “Biological activity and processing technologies of edible insects: A review”, Food Science and Biotechnology, 30, 1003-1023. 2021.

A. Escobar‐Ortiz, D. Hernández‐Saavedra, J. Lizardi‐Mendoza, I.F. Pérez‐Ramírez, O. Mora‐Izaguirre, M. Ramos‐Gómez, R. Reynoso‐Camacho, “Consumption of cricket (Acheta domesticus) flour decreases insulin resistance and fat accumulation in rats fed with high‐fat and‐fructose diet”, Journal of Food Biochemistry, 46(9), e14269. 2022. https://doi.org/10.1111/jfbc.14269

D. Aiello, M. Barbera, D. Bongiorno, M. Cammarata, V. Censi, S. Indelicato, F. Mazzotti, A. Napoli, D. Piazzese, F. Saiano, “Edible Insects an Alternative Nutritional Source of Bioactive Compounds: A Review”, Molecules, 28(2), 699 2023. https://doi.org/10.3390/molecules28020699

C. Avendaño, M. Sánchez, C. Valenzuela, “Insectos: son realmente una alternativa para la alimentación de animales y humanos”, Revista chilena de nutrición, 47(6), 1029-1037. 2020.

L. Apolo-Arévalo, J. Lannacone. “Crianza del grillo (acheta domesticus) como fuente alternativa de proteínas para el consumo humano”. Scientia, vol. XVII, No. 17, pp. 161-173. 2015.

S.M. Hamed, A.A. Abd El-Rhman, N. Abdel-Raouf, I.B. Ibraheem, “Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology”, Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 104-110. 2018.

J. Poveda, A. Jiménez-Gómez, Z. Saati-Santamaría, R. Usategui-Martín, R. Rivas, P. García-Fraile, “Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants” Appl Soil Ecol 142:110–122. 2019.

A.M. Liceaga, “Edible insects, a valuable protein source from ancient to modern times”, Advances in Food and Nutrition Research, 101, 129. 2022. 10.1016/bs.afnr.2022.04.002

S. Imathiu, “Benefits and food safety concerns associated with consumption of edible insects”, NFS journal, 18, 1-11.2020. https://doi.org/10.1016/j.nfs.2019.11.002

(2019) “World: total population”. ONU. [Online]. Available: https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900.

(2020) Boletín UNAM-DGCS-236. Cultivo y consumo de insectos, opción ante la creciente demanda de alimentos. [Online]. Available: https://www.dgcs.unam.mx/boletin/bdboletin/2020_236.html

J. Chakravorty, S. Ghosh, C. Jung, V.B. Meyer-Rochow, “Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India” Journal of Asia-Pacific Entomology, 17: 407–415. 2014.

A. Van Huis, “Insects as food and feed, a new emerging agricultural sector: a review”. J Insects Food Feed 6:27–44. 2019.

. H. Makkar, G. Tran, V. Heuzé, P. Ankers” State-of-the-art on use of insects as animal feed”, Anim Feed Sci Technol, 197: 1-33. 2014.

M. Sánchez, F. Barroso, F. Manzano-Agugliaro, “Insect meal as renewable source of food for animal feeding: A review”, J Clean Prod., 65: 16-27. 2014.

(2016) A. Batal, N. Dale. “Feedstuffs Ingredient Analysis Table: 2016 edition”. [en línea https://feedstuffs.farmcentric.com/mdfm/Feeess50/author/427/2015/11/Feedstuffs_RIBG_Ingredient_Analysis_Table_2016.pdf . [consulta: 03-09- 2022].

S. Belluco, C. Losasso, M. Maggioletti, C. Alonzi, M. Paoletti, A. Ricci, “Edible insects in a food safety and nutritional perspective: a critical review”, Compr. Rev. Food Sci. Food Saf., 12: 296-313. 2013.

R. Durán-Galdo, L. Saavedra-Garcia, “Entomofagia,¿Una potencial alternativa para la seguridad alimentaria?: Una revisión narrativa”, Rev. Española Nutr. Comunitaria, 28, 14. 2022.

Y. Jongema, “List of edible insect species of the world”, Laboratory of Entomology, Wageningen UR, Wageningen, the Netherlands. 2017.

S. Chomchai, P. Laoraksa, P. Virojvatanakul, P. Boonratana, C. Chomchai, “Prevalence and cluster effect of self-reported allergic reactions among insect consumers”, Asian Pacific J Allergy Immunol, 38(1):406. 2020.

A. Van Huis, J. Van Itterbeeck, H. Klunder, E. Mertens, A. Halloran, G. Muir, P. Vantomme, “Edible insects: future prospects for food and feed security”, Food and Agriculture Organization of the United Nations., Rome, Italy, 2013.

A.M. Rodríguez-Chacón, “Propuesta De Alternativas De Producción De Proteína Para Alimentación Animal A Partir De Insectos En Colombia”, Lic. Tecnología de Alimentos thesis, Universidad Nacional Abierta y a Distancia – UNAD, Colombia, Jul. 2020.

D. Lenz, J.S. Pappalardo, A.A. Pazos, F.E. Mutti, G.S. Gallardo, A.G. Aparicio, V.C. Fernandez Arhex, Piensos a base de insectos para alimentación animal. Plataforma Agraria Libre de Canarias (PALCA), Dic. 2022.

R. Toriz, V. Ruiz, U. García, L. Hernández, M. Fonseca, G Rodríguez, “Assessment of dietary supplementation levels of black soldier fly, Hemertia illucens, pre-pupae meal for juvenile nile tilapia, Oreochromis niloticus”, Southwestern Entomol., 44: 251-259. 2019.

T. Stadtlander, A. Stamer, A. Buser, J. Wohlfahrt, F. Leiber, C. Sandrock, “Hermetia illucens meal as fish meal replacement for rainbow trout on farm”, J Ins Food Feed, 3: 165-175. 2017.

T. Veldkamp, G. Bosch, “Insects: a protein-rich feed ingredient in pig and poultry diets”, Anim Front., 5: 45-50. 2015.

H. Wang, K. ur Rehman, X. Liu, Q. Yang, L. Zheng, W. Li, “Insect biorefinery: a green approach for conversion of crop residues into biodiesel and protein” Biotechnol Biofuels, 10:304. 2017.

J.C. Ortiz, A.T. Ruiz, J.A. Morales-Ramos, M. Thomas, M.G. Rojas, J.K. Tomberlin, “Insect mass production technologies” In: Dossey AT, Morales-Ramos JA, Rojas MG (eds). Academic Press, Insects as sustainable food ingredients, pp 153–201. 2016.

H. Darby, A. Gupta, E. Cummings, L. Ruhl, S. Ziegler, “Cricket Frass as a Potential Nitrogen Fertility Source” Northwest Crops & Soils Program, pp. 86. 2017.

F. El Amerany, M. Rhazi, S. Wahbi, M. Taourirte, A. Meddich, “The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato”, Scientia Horticulturae, 261, 109015. 2020.

C.L. Velásquez, M.L. Pirela, A. Chirinos, L.I. Avelizapa, “Nuevos retos en agricultura para los biopolìmeros de quitina y quitosano. Parte 1: Efectos beneficiosos para los cultivos”, Revista Iberoamericana de Polímeros, 20(3), 118-136. 2019.

R. Pichyangkura, S. Chadchawan, “Biostimulant activity of chitosan in horticulture”, Scientia Horticulturae, 196, 49-65. 2015.

A.M. Dulaurent, G. Daoulas, M.P. Faucon, D. Houben, “Earthworms (Lumbricus terrestris L.) mediate the fertilizing effect of frass”. Agronomy, 10(6), 783. 2020.

L.P. de Souza-Vandenberghe, L.M.B. Garcia, C. Rodrigues, M.C. Camara, G.V. de Melo Pereira, J. de Oliveira, C.R. Soccol, “Potential applications of plant probiotic microorganisms in agriculture and forestry”. AIMS Microbiol 3:629–648. 2017.

L. Melgar, A. Hernandez, C. Salinas, “Edible insects processing: traditional and innovative technologies”, Compr Rev Food Sci Food Saf., 18: 1166-1191. 2019.

S. Kim, C. Weaver, M. Choi, “Proximate composition and mineral content of five edible insects consumed in Korea”, CyTA J Food, 15: 143-146. 2017.

Y. Park, Y. Choi, K. Hwang, T. Kim, C. Lee, D. Shin, “Physicochemical properties of meat batter added with edible silkworm Pupae (Bombyx mori) and transglutaminase”, Korean J Food Sci Anim Res., 37: 351-359. 2017.

M. Liu, Y. Wang, Y. Liu, R. Ruan, “Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: a review” Food Res Int., 89: 63-73. 2016.

A.J. da Silva Lucas, L.M. de Oliveira, M. Da Rocha, C. Prentice, “Edible insects: An alternative of nutritional, functional and bioactive compounds”, Food chemistry, 311, 126022. 2020. https://doi.org/10.1016/j.foodchem.2019.126022

G. Ssepuuya, J. Kagulire, J. Katongole, D. Kabbo, J. Claes, D. Nakimbugwe, “Suitable extraction conditions for determination of total anti-oxidant capacity and phenolic compounds in Ruspolia differens Serville”, Journal of Insects as Food and Feed, 7(2), 205-214. 2021. https://doi.org/10.3920/JIFF2020.0028

M.C. Nino, L. Reddivari, C. Osorio, I. Kaplan, A.M. Liceaga, “Insects as a source of phenolic compounds and potential health benefits. Journal of Insects as Food and Feed”, 7(7), 1077-1087. 2021. https://doi.org/10.3920/JIFF2020.0113

M.C. Nino, L. Reddivari, M.G. Ferruzzi, A.M. Liceaga, “Targeted phenolic characterization and antioxidant bioactivity of extracts from edible Acheta domesticus”, Foods, 10(10), 2295. 2021. https://doi.org/10.3390/foods10102295

M. Issaoui, A.M. Delgado, G. Caruso, M. Micali, M. Barbera, H. Atrous, A. Ouslati, N. Chammem, “ Phenols, flavors, and the mediterranean diet”, Journal of AOAC International, 103(4), 915-924. 2020. https://doi.org/10.1093/jaocint/qsz018

Nardini, “Phenolic compounds in food: Characterization and health benefits”, Molecules, 27(3), 783. 2022. https://doi.org/10.3390/molecules27030783

Z. Zhang, S. Chen, X. Wei, J. Xiao, D. Huang, “Characterization, Antioxidant Activities, and Pancreatic Lipase Inhibitory Effect of Extract From the Edible Insect Polyrhachis vicina”, Frontiers in Nutrition, 9. 2022. 10.3389/fnut.2022.860174

A. Jozefiak, R.M. Engberg, “Insect proteins as a potential source of antimicrobial peptides in livestock production. A review”, Journal of Animal and Feed Sciences, 26(2), 87-99. 2017. DOI: https://doi.org/10.22358/jafs/69998/2017

T. Veldkamp, L. Dong, A. Paul, C.C.F.M. Govers, “Bioactive properties of insect products for monogastric animals–a review”, Journal of Insects as Food and Feed, 8(9), 1027-1040. 2022. https://doi.org/10.3920/JIFF2021.0031

Y. Quah, S.R. Tong, J. Bojarska, K. Giller, S.A. Tan, Z.M. Ziora, T. Esatbeyoglu T.T. Chai, “Bioactive peptide discovery from edible insects for potential applications in human health and agriculture”, Molecules, 28(3), 1233. 2023. https://doi.org/10.3390/molecules28031233

I. Pali-Schöll, R. Binder, Y. Moens, F. Polesny, S. Monsó, “Edible insects–defining knowledge gaps in biological and ethical considerations of entomophagy”, Crit Rev Food Sci Nutr., 59(17):2760–71. 2019.

A. Martínez, C. Marín, D. Rodrigo, P.S. Fernández, C.M. Rosell. (2016) Los insectos alimentan al mundo. Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC). [Online]. Available: https://www.acnv.es/news/los-insectos-alimentan-al-mundo/

M. Zumbado, D. Azofeifa. (2018). Insectos de importancia agrícola – Guía Básica de entomología. Programa Nacional de Agricultura Orgánica. [Online]. Available: http://www.mag.go.cr/bibliotecavirtual/H10-10951.pdf

V. Heuzé, G. Tran. (2015). Housefly maggot meal. Feedipedia - Programa de INRA, CIRAD, AFZ and FAO. [Online]. Available: https://www.feedipedia.org/node/671

G. Tran, C. Gnaedinger, C. Mélin. (2019) Mealworm (Tenebrio molitor). Feedipedia - Programa de INRA, CIRAD, AFZ and FAO. [Online]. Available: https://www.feedipedia.org/node/16401

V. Heuzé, G. Tran, S. Giger-Reverdin, F. Lebas. (2017) Harina de pupa de gusanos de seda. Feedipedia - Programa de INRA, CIRAD, AFZ and FAO. [Online]. Available: https://www.feedipedia.org/node/199

S. Ray, S. Basu, L.J. Rivera-Vega, F.E. Acevedo, J. Louis, G.W. Felton, D.S. Luthe, “Lessons from the far end: caterpillar frass-induced de- fenses in maize, rice, cabbage, and tomato”, J Chem Ecol 42:1130– 1141. 2016.

F.E. Acevedo, M. Peiffer, C.W. Tan, B.A. Stanley, A. Stanley, J. Wang, A.G. Jones, K. Hoover, C. Rosa, D. Luthe, G. Felton, “Fall armyworm- associated gut bacteria modulate plant defense responses. Mol Plant- Microbe Interact 30:127–137. 2017.

E.A. Ferruzca-Campos, R.G. Guevara-González, R. Guzmán-Cruz, R. Reynoso-Camacho, “Biostimulant or Elicitor Effect Of Cricket Frass (Acheta domesticus) On The Production Of Tomato Under Greenhouse”, XVIII Congreso Internacional de Ingeniería CONIIN, 2022.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Perspectivas de la Ciencia y la Tecnología