Effect of the chemical and physical elicitors on the antioxidant and antimicrobial activity of pepper
agri-7
PDF (Spanish)

Keywords

BIO
Pepper
Staphylococcus aureus
elicitors
antioxidants

How to Cite

[1]
I. Tovar-Zamora, “Effect of the chemical and physical elicitors on the antioxidant and antimicrobial activity of pepper”, PCT, pp. 119–139, Mar. 2024, doi: 10.61820/pct.vi.1074.

Abstract

Capsicum annuum is the most cultivated species of chili in the world. The fruits of this species contain secondary metabolites that can be induced by the application of elicitors. The objective of this study was to evaluate the effect of hydrogen peroxide (H2O2), salicylic acid (SA) and regulated deficit irrigation (RDI) on the plant phenological variables and in vitro antioxidant and antimicrobial activity of pepper fruits. The experimental design was completely random and the treatments consisted of exogenous application of H2O2 (6, 14, and 18 mM), SA (0.01, 0.1 and 0.5 mM), and RDI (50%). The concentration of phenols, flavonoids and tannins was quantified by colorimetric methods. The antioxidant activity was determined by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) techniques, in addition the in vitro antimicrobial activity was evaluated against Staphylococcus aureus The highest concentrations of phenols and flavonoids corresponded to treatments SA 0.5 mM, H2O2 14 mM and 18 mM and RDI 50% The highest level of tannins was reported for treatments SA 0.1 mM and AS 0.01 mM. The antioxidant activity was higher in the treatments with the highest concentrations of the elicitors of SA and H2O2. Finally, the treatments AS 0.01 and 0.5 mM showed antimicrobial activity against S. aureus. Therefore, the application of AS, H2O2 and RDC 50% were an adequate strategy to improve the growth and development of the bell pepper plant.

PDF (Spanish)

References

U. Novoa, F. Ortiz, S. Hernández, J. Raya-Pérez, A. Cibrian y E. Enriquez, “Diversidad morfológica del chile piquín (Capsicum annuum L. var. glabriusculum) de Querétaro y Guanajuato, México”. Revista Mexicana de Ciencias Agrícolas, 9:1159–1172, 2018. https://doi.org/10.29312/remexca.v9i6.1581

V. Carvalho-Lemos, J. Reimer y A. Wormit, “Color for Life: Biosynthesis and Distribution of Phenolic Compounds in Pepper (Capsicum annuum)”, Agriculture, 9(4), 81, 2019. https://doi.org/10.3390/agriculture9040081

G. O. Nkansah, J. C. Norman y A. M. Martey, “Growth, Yield and Consumer Acceptance of Sweet Pepper (Capsicum annuum L.) as Influenced by Open Field and Greenhouse Production Systems”, Journal of Horticulture, 4: 216, 2017. https://doi: 10.4172/2376-0354.1000216

F. Fratianni, A. d’ Acierno, A. Cozzolino, P. Spigno, R. Riccardi, F. Raimo, C. Pane, M. Zaccardelli, V. Tranchida Lombardo, M. Tucci, S. Grillo, R. Coppolay F. Nazzaro, “Biochemical Characterization of Traditional Varieties of Sweet Pepper (Capsicum annuum L.) of the Campania Region, Southern Italy”, Antioxidants, 9(6), 556, 2020. https://doi:10.3390/antiox9060556

A. Panche, A. Diwan y S. Chandra, “Flavonoids: An overview", Journal of Nutritional Science, 5: E47, 2016. https://doi.org/10.1017/jns.2016.41

M. Vargas-Hernandez, I. Macias-Bobadilla, R. G. Guevara-Gonzalez, S. de J. Romero-Gomez, E. Rico-Garcia, R. V. Ocampo-Velazquez, L.de L. Alvarez-Arquieta e I. Torres-Pacheco, “Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture”, Frontiers in Plant Science, 8:1762, 2017. https://doi.org/10.3389/fpls.2017.01762

W.-L. Chen y Y.-T. Ko, “Exogenous hydrogen peroxide induces chilling tolerance in Phalaenopsis seedlings through glutathione-related antioxidant system”, Scientia Horticulturae, 289, 110421, 2021. https://doi:10.1016/j.scienta.2021.110421.

M. A. Hossain, S. Bhattacharjee, S. M. Armin, P. Qian, W. Xin, H. Y. Li, D. J. Burritt, M. Fujita y L. Tran, “Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging”, Front. Plant Sci. 6:420, 2015. https://doi: 10.3389/fpls.2015.00420

M. Cano-Lamadrid, I. Giron, R. Pleite, F. Burló, M. Corell, A. Moriana y A. Carbonell-Barrachina, “Quality Attributes of Table Olives as Affected by Regulated Deficit Irrigation”, Lebensmittel-Wissenschaft Und-Technologie 62:19-26, 2015. https://doi.org/10.1016/j.lwt.2014.12.063

E. Coyago-Cruz, M. Corell, C. Stinco, D. Hernanz, A. Moriana y A. J. Meléndez-Martínez, “Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.)”, Food Research International, 96, 2017. http://dx.doi.org/10.1016/j.foodres.2017.03.026.

M. Giacalone, F. Forfori y F. Giunta, “Chapter 20-Chili Pepper Compounds in the Management of Neuropathic Pain”, Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease, 187–195, 2015. https://doi.org/10.1016/B978-0-12-411462-3.00020-5

K. Becker, “Chapter 2 - Pathogenesis of Staphylococcus aureus”. Staphylococcus Aureus, Academic Press, 13–38, 2018. https://doi:10.1016/b978-0-12-809671-0.00002-4

N. Feyissa, T. Alemu, D. Jirata Birri, A. Dessalegn, “Isolation, identification, and determination of antibiogram characteristics of Staphylococcus aureus in cow milk and milk products (yoghurt and cheese) in West Showa Zone, Ethiopia”, International Dairy Journal, V. 137 105503, 2023. https://doi.org/10.1016/j.idairyj.2022.105503

V. Dewanto, X. Wu, K. K. Adom y R. H. Liu, “Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity”, Journal of Agricultural and Food Chemistry, 50:3010–3014, 2002. https://doi.org/10.1021/jf0115589

B. D. Oomah y C. M. Anaberta, “Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L)”, Journal of the Science of Food and Agriculture, 85:935–942, 2005. https://doi.org/10.1002/jsfa.2019

N. Nenadis, L. F. Wang, M. Tsimidou y H. Y. Zhang, “Estimation of scavenging activity of phenolic compounds using the ABT S (*+) assay”, Journal of Agriculture and Food Chemistry, 52:4669-74, 2004. https://doi.org/10.1021/jf0400056

D. Dempsey y D. Klessig, “How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans?”, BMC Biology 15, 2017. https://doi.org/10.1186/s12915-017-0364-8.

M. Vargas-Hernández, I. Torres-Pacheco, F. Gautier, B. Álvarez-Mayorga, A. Cruz-Hernández, L. García-Mier, S. N. Jímenez-García, R. V. Ocampo-Velázquez, A. A. Feregrino-Perez y G. Guevara-Gonzalez, “Influence of hydrogen peroxide foliar applications on in vitro antimicrobial activity in Capsicum chinense” Jacq. Plant Biosystems -An International Journal Dealing with All Aspects of Plant Biology, 151:269–275, 2017. https://doi.org/10.1080/11263504.2016.1168494

W. Poot-Poot, R. Delgado Martínez, S. Castro-Nava, M. Segura-Martínez, A. Carreón-Pérez y J. Hernández-Martínez, “Effect of salicylic acid on pre-transplant acclimatization of native tomato populations”, Horticultura Brasileira, 36:480-485, 2018. https://doi.org/10.1590/s0102-053620180409

Y. Arif, F. Sami, H. Siddiqui, A. Bajguz y S. Hayat, “Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment”, Environmental and Experimental Botany, 104040, 2020. https://doi:10.1016/j.envexpbot.2020.1040

M. Y. Kabir, S. U. Nambeesan, J. Bautista y J. C. Díaz-Pérez, “Effect of irrigation level on plant growth, physiology and fruit yield and quality in bell pepper (Capsicum annuum L.)”, Scientia Horticulturae, 281, 109902, 2021. https://doi:10.1016/j.scienta.2021.109902

H. Nelissen, X. H. Sun, B. Rymen, Y. Jikumaru, M. Kojima, Y. Takebayashi, R. Abbeloos, K. Demuynck, V. Storme, M. Vuylsteke, J. De Block, D. Herman, F. Coppens, S. Maere, Y. Kamiya, H. Sakakibara y G.T.S. Beemster, “The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels”, Plant Biotechnology Journal, 16:615–627, 2018. https://doi.org/10.1111/pbi.12801

M. Świeca, “Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities”, Journal of Chemistry, 2016:1936516, 2016. https://doi.org/10.1155/2016/1936516

D. E. M. Radwan, A. K. Mohamed, K. A. Fayez y A. M. Abdelrahman, “Oxidative stress caused by Basagran® herbicide is altered by salicylic acid treatments in peanut plants”, Heliyon, 5(5), e01791, 2019. https://doi:10.1016/j.heliyon.2019.e01791 [25] A. Kaur y B. Asthir, “Molecular responses to drought stress in plants”, Biologia plantarum 61 (2): 201-209, 2017. https://doi:10.1007/s10535-016-0700-9.

S. Aryal, M.K. Baniya, K. Danekhu, P. Kunwar, R. Gurung y N. Koirala, “Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal”, Plants (Basel, Switzerland) 8:96, 2019. https://doi.org/10.3390/plants8040096.

E. Shalaby y S. Shanab, “Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis”, Indian Journal of Marine Sciences, 42:556–564, 2013.

A. Becerra-Moreno, M. Redondo-Gil, J. Benavides, V. Nair, L. Cisneros-Zevallos y D. A. Jacobo-Velázquez, “Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot”, Frontiers in Plant Science 6:837, 2015. https://doi.org/10.3389/fpls.2015.00837

M. C. Vázquez-Hernández, I. Parola-Contreras, L. M. Montoya-Gómez, I. Torres-Pacheco, D. Schwarz y R. G. Guevara-González, “Eustressors: Chemical and physical stress factors used to enhance vegetables production”, Scientia Horticulturae, 250:223-229, 2015. https://doi.org/10.1016/j.scienta.2019.02.053

E. Marini, G. Magi, M. Mingoia, A. Pugnaloni y B. Facinelli, “Antimicrobial and Anti-Virulence Activity of Capsaicin Against Erythromycin-Resistant”, Cell-Invasive Group a Streptococci, Frontiers in Microbiology, 6:1281, 2015. https://doi.org/10.3389/fmicb.2015.01281

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Perspectivas de la Ciencia y la Tecnología