Abundance, molecular characterizations and mass production of beneficial microbial communities (Entomo-pathogenic nematodes) from the soil
agri-5
PDF (Spanish)

Keywords

Biocontrol, Steinernema spp, beneficial nematodes, PCR and Galleria mellonella

How to Cite

[1]
G. Chandrakasan, J. F. García Trejo, O. Alatorre Jácome, and E. Rico-García, “Abundance, molecular characterizations and mass production of beneficial microbial communities (Entomo-pathogenic nematodes) from the soil”, PCT, pp. 83–103, Mar. 2024, doi: 10.61820/pct.vi.1068.

Abstract

Entomopathogenic Nematodes (EPN) are considered one of the best alternatives for the biological control of insect pests. Among their main characteristics, EPNs show high efficiency in the active control of macroinvertebrates, have high fecundity and fertility rates, are harmless to plants and vertebrates, and their cultivation and management present affordable costs. In order to obtain active strains of EPN used as biocontrol to protect plants from phytoparasitic nematodes, various samples were collected from agricultural and forestry cultivation. The soil samples were characterized physiochemically, subsequently Galleria mellonella larvae were used for the isolation of EPN, the latter were identified based on their morphological characteristics, and reproduced on a laboratory scale using orbital shaking techniques. As a result, in 10% of the samples the presence of EPNs was detected. Using methods of molecular biology and metagenomic analysis identified two EPN taxa: Steinernema spp. and Heterorhabditis spp. and, with a relative abundance of 8% and 2%, respectively. Finally, tests were carried out for the establishment of a medium-scale axenic culture of EPNs, using traditional techniques without excessively expensive inputs, such as conical flask culture and orbitally shaken flasks under controlled growth conditions, in order to avoid further investment in infrastructure. In conclusion, the cultivation of these EPN presents a real and sustainable alternative for the bio-control of pests that affect different agricultural crops.

PDF (Spanish)

References

C. Gobinath, M. T. Ayala, J. F. Trejo, G. Marcus, M. Maruthupandy, C. C. Kanisha, M. Murugan, F. A. AL-mekhlafi, and M. A. Wadaan, “Bio controlled efficacy of Bacillus thuringiensis cry protein protection against tomato fruit borer Helicoverpa armigera in a laboratory environment,” Physiol. Mol. Plant Pathol.,vol. 119, pp. 101827, Mayo 2022.

A. Thanwisai, P. Muangpat, W. Meesil, P. Janthu, A. Dumidae, C. Subkrasae, J. Ardpairin, S. Tandhavanant, T. P. Yoshino, and A. Vitta, “Entomopathogenic Nematodes and Their Symbiotic Bacteria from the National Parks of Thailand and Larvicidal Property of Symbiotic Bacteria against Aedes aegypti and Culex quinquefasciatus,” Biology, vol. 11, pp. 1658, Nov. 2022.

M. Aalaoui, F. Mokrini, A. A. Dababat, R. Lahlali, and M. Sbaghi, “Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae),” Sci. Rep., vol.12, pp. 1-7, Mayo 2022.

C. Gobinath, P. Seetharaman, S. Gnanasekar, M. Kadarkarai, and S. Sivaperumal, “Xenorhabdus stockiae KT835471-mediated feasible biosynthesis of metal nanoparticles for their antibacterial and cytotoxic activities,” Artif. Cells Nanomed. Biotechnol., vol. 45, pp. 1675-1684, Nov. 2017.

J. Ramakrishnan, L. Salame, A. Nasser, I. Glazer, and D. Ment, “Survival and efficacy of entomopathogenic nematodes on exposed surfaces,” Sci. Rep., vol. 12, pp. 1-2, Mar. 2022.

G. O. Poinar, and G. M. Thomas, “Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteriaceae : Eubacteriales) in the development of the nematode,” Parasitology, vol. 56, pp. 385-390, Mayo 1966.

A. F. Bird, and R. J. Akhurst, “The name of the intestinal vesicle in Nematodes of the family Steinernematidae,” Int. J. Parasitol., vol. 13, pp. 599-606, Dic. 1983.

S. Forst, and K. Nealson, “Molecular Biology of the Symbiotic-Pathogenic Bacteria Xenorhabdus spp. and Photorhabdus spp.,” Microbiol. Rev., vol. 60, pp. 21-43, Mar. 1996.

M.D. Kaya, G. Okcu, and M. Atak, “Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.),” Eur. J. Agron., vol. 24, pp. 291-295, Mayo 2006.

Z. Mracek, S. Becvar, P. Kindlmann, and J. Jersakova, “Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic,” Biol. Control., vol. 34, pp. 27-37, Jul. 2005.

D. I. Shapiro-Ilan, and W. A. Gardner, “Improved control of Curuclio caryae (Coleoptera: Curculionidae) through multi-stage pre-emergence applications of Steinernema carpocapsae,” J. Entomol. Sci., vol. 47, pp. 27–34, Ene. 2012.

L. G. Leite, D. I. Shapiro-Ilan, S. Hazir, and M. A. Jackson, “Effect of inoculum age and physical parameters on in vitro culture of the entomopathogenic nematode Steinernema feltiae,” J. Helminthol., vol. 91, pp. 686–695, Nov. 2017.

G. F. White, “A method for obtaining infective nematode larvae from cultures,” Science, vol. 66, pp. 302-303, Sep. 1927.

S. P. Stock, J. F. Campbell, and S. A. Nadler, “Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae),” J. Parasitol., vol. 87, pp. 877-889, Aug. 2001.

S. R. Dutky, J. V. Thompson, and G. E. Cantwell, “A technique for the mass propagation of the DD-136 nematode,” J. Insect Physiol., vol. 6, pp. 417- 422, 1964.

R. J. Akhurst, “Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis,” J. Gen. Microbiol., vol. 121, pp. 303-309, Dic. 1980.

P. Tailliez, S. Pages, N. Ginibre, and N. E. Boemare, “New insight into diversity in the genus Xenorhabdus, including the description of ten novel species,” IJSEM, vol. 56(12), pp. 2805-2818, Dic. 2006.

E. J. Buecher, and I. Popiel, “Liquid culture of the entomogenous nematode Steinernema feltiae with its bacterial symbiont,” J. Nematol., vol. 21(4), pp. 500-504, Oct. 1989.

N. Chavarría-Hernández, and M. de la Torre, “Population growth kinetics of the nematode, Steinernema feltiae, in submerged monoxenic culture,” Biotechnol. Lett., vol. 23(4), pp. 311-315, Feb. 2001.

P. C. Sixto-Josué, A. I. Rodríguez-Hernández, M. del Rocío López-Cuellar, A. Zepeda-Bastida, and N. Chavarría-Hernández, “In-vitro liquid culture of the entomopathogenic nematode, Steinernema colombiense, in orbitally shaken flasks,” Biocontrol Sci. Technol., vol. 28(9), pp. 901-911, Sep. 2018.

D. I. Shapiro-Ilan, E. E. Lewis, R. W. Behle, and M.R. McGuire, “Formulation of entomopathogenic nematode-infected cadavers,” J. Invertebr. Pathol., vol. 78(1), pp. 17-23, Jul. 2001.

H. B. Khatri-Chhetri, L. Waeyenberge, H. K. Manandhar, and M. Moens, “Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Nepal,” J. Invertebr. Pathol., vol. 103 (1), pp. 74-78, Ene. 2010.

K. Lalitha, K. Nithya, B. G. Bharathi, S. Venkatesan, and M. S. Shivakumar, “Long-term storage does not affect the infectivity of entomopathogenic nematodes on insect hosts,” Appl. Microbiol. Biotechnol., vol. 107, pp. 419-431, Dic. 2022.

S. Hazir, N. Keskin, S. P. Stock,H. K. Kaya, and S. Özcan, “Diversity and distribution of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Turkey,” Biodivers. Conserv., vol. 12(2), pp. 375–386, Feb. 2003.

N. E. Kary, G. Niknam, C. T. Griffin, S. A. Mohammadi, and M, Moghaddam, “A survey of entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the north-west of Iran,” Nematology, vol. 11(1), pp. 107-116, Ene. 2009.

M. D. Dunn, P. D. Belur, and A. P. Malan, “A review of the in vitro liquid mass culture of entomopathogenic nematodes,” Biocontrol Sci. Technol., vol. 31 (1), pp. 1-21, Ene. 2021.

C. I. Cortés‐Martínez, and N. Chavarría‐Hernández, “Production of entomopathogenic nematodes in submerged monoxenic culture: a review,” Biotechnol. Bioeng., vol. 117 (12), pp. 3968-3985, Dic. 2020.

N. E. Boemare, and R. J. Akhurst, Genera Photorhabdus and Xenorhabdus. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt, Ed, The prokaryotes:Vol. 6, Proteobacteria: Gamma subclass, pp. 451- 494, New York: Springer-Verlag, 2002.

D. Upadhyay, R. Kooliyottil, S. Mandjiny, F. L. Inman III, and L. D. Holmes, “Mass production of the beneficial nematode Steinernema carpocapsae utilizing a fed-batch culturing process,” Intl. J. Phytopathol., vol. 2 (1), pp. 52-58, Abr. 2013.

A. Hirao, and R- U. Ehlers, “Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida),” Appl. Microbiol. Biotechnol., vol. 85(3), pp. 507-515, Ene. 2010.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Perspectivas de la Ciencia y la Tecnología