Nanotecnología aplicada en terapia fotodinámica, una nueva generación: una revisión
pct10-8
PDF

Palabras clave

Terapia Fotodinámica
Fotosensibilizadores
Oxígeno singulete
Nanomaterial

Cómo citar

[1]
L. A. Ontiveros Gómez and E. A. Elizalde Peña, “Nanotecnología aplicada en terapia fotodinámica, una nueva generación: una revisión”, PCT, vol. 6, no. 10, pp. 75–88, Jan. 2023, doi: 10.61820/he1qge33.

Resumen

La terapia fotodinámica (PDT, por sus siglas en inglés), es una técnica no invasiva para el tratamiento de diversas enfermedades, entre ellas las de tipo oncológico. Para ello, se usa un fotosensibilizador (FS); es decir, una molécula que absorbe un fotón de luz y estimula la promoción del estado basal a uno de singlete excitado con poca duración. El FS ideal debe tener las siguientes características: anfifilicidad, acumulación preferente en tejido tumoral y desplazamiento rápido del tejido sano, toxicidad en oscuro despreciable, alto rendimiento cuántico de estado triplete, entre otras. Varios FS muestran dichas condiciones a través de disferentes generaciones: en la primera están las hematoporfirinas y fotofrinas, que debido a su baja pureza química y poca penetración en tejidos se pasaron a la segunda generación para continuar su formación; dado a que los FS presentaron baja solubilidad se procedió a un estudio de nuevos métodos para el transporte de fármacos. Finalmente, la tercera generación consistió en la síntesis de nuevas sustancias con mayor afinidad a tejidos tumorales para resolver las fallas de generaciones predecesoras. El proceso involucró la combinación de FS de la segunda generación con nanomateriales como compuestos trasportadores o estimulantes. Con el uso de los nanomateriales como FS se empezó a desarrollar una cuarta generación; las moléculas han demostrado la capacidad de generar estados cuánticos excitados para su uso en PDT. Por consiguiente, este artículo presenta los obstáculos a vencer, las numerosas aplicaciones y limitaciones de los fotosensibilizadores a través de sus generaciones para estimular el desarrollo de nuevos compuestos para futuros tratamientos del cáncer.

PDF

Referencias

F. S. De Rosa y M. V. L. B. Bentley, “Photodynamic therapy of skin cancers: Sensitizers, clinical studies and future directives”, Pharm. Res., vol. 17, no. 12, pp. 1447–1455, 2000, DOI: 10.1023/A:1007612905378.

G. B. Kharkwal, S. K. Sharma, Y. Y. Huang, T. Dai, and M. R. Hamblin, “Photodynamic therapy for infections: Clinical applications”, Lasers Surg. Med., vol. 43, no. 7, pp. 755–767, 2011, DOI: 10.1002/lsm.21080.

D. Luo, K. A. Carter, D. Miranda, y J. F. Lovell, “Chemophototherapy: An Emerging Treatment Option for Solid Tumors”, Adv. Sci., vol. 4, no. 1, pp. 1–24, 2017, DOI: 10.1002/advs.201600106.

R. M. Szeimies, J. Dräger, C. Abels, y M. Landthaler, “Chapter 1 History of photodynamic therapy in dermatology”, Compr. Ser. Photosciences, vol. 2, no. C, pp. 3–15, 2001, DOI: 10.1016/S1568-461X(01)80105-8.

F. Wilkinson, W. P. Helman, y A. B. Ross, “Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution”, J. Phys. Chem. Ref. Data, vol. 22, no. 1, pp. 113–262, 1993, DOI: 10.1063/1.555934.

L. Benov, “Photodynamic Therapy: Current Status and Future Directions”, 2014, DOI: 10.1159/000362416.

L. Huang, Y. Xuan, Y. Koide, T. Zhiyentayev, M. Tanaka, and M. R. Hamblin, “Type i and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on gram-negative and gram-positive bacteria”, Lasers Surg. Med., vol. 44, no. 6, pp. 490–499, 2012, DOI: 10.1002/lsm.22045.

X. Li et al., “Phthalocyanines as medicinal photosensitizers: Developments in the last five years”, Coord. Chem. Rev., vol. 379, pp. 147–160, 2019, DOI: 10.1016/j.ccr.2017.08.003.

P. Mroz, A. Yaroslavsky, G. B. Kharkwal, y M. R. Hamblin, “Cell death pathways in photodynamic therapy of cancer”, Cancers (Basel)., vol. 3, no. 2, pp. 2516–2539, 2011, DOI: 10.3390/cancers3022516.

C. C. Benz y C. Yau, “Ageing, oxidative stress and cancer: Paradigms in parallax”, Nat. Rev. Cancer, vol. 8, no. 11, pp. 875–879, 2008, DOI: 10.1038/nrc2522.

C. A. Robertson, D. H. Evans, y H. Abrahamse, “Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT”, J. Photochem. Photobiol. B Biol., vol. 96, no. 1, pp. 1–8, 2009, DOI: 10.1016/j.jphotobiol.2009.04.001.

R. R. Allison y K. Moghissi, “Photodynamic therapy (PDT): PDT mechanisms”, Clin. Endosc., vol. 46, no. 1, pp. 24–29, 2013, DOI: 10.5946/ce.2013.46.1.24.

S. Kwiatkowski et al., “Photodynamic therapy – mechanisms, photosensitizers and combinations”, Biomedicine and Pharmacotherapy, vol. 106. Elsevier Masson SAS, pp. 1098–1107, Oct. 01, 2018, DOI: 10.1016/j.biopha.2018.07.049.

T. J. Dougherty, J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle, y A. Mittleman, “Photoradiation Therapy for the Treatment of Malignant Tumors”, Cancer Res., vol. 38, no. 8, pp. 2628–2635, 1978.

D. Kessel, “Photodynamic therapy: From the beginning”, Photodiagnosis Photodyn. Ther., vol. 1, no. 1, pp. 3–7, 2004, DOI:10.1016/S1572-1000(04)00003-1.

T. C. Z. Haixia Qiu, Michael M. Kim, Rozhin Penjweini, Jarod C. Finlay, Theresa M. Busch, Tianhao Wang, Wenshen Guo, Keith A. Cengel, Charles B. Simone II y Eli Glatstein, “Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study”, Int. J. Lab. Hematol., vol. 38, no. 1, pp. 42–49, 2016, DOI: 10.1111/ijlh.12426.

B. Sun, W. Li, y N. Liu, “Curative effect of the recent photofrin photodynamic adjuvant treatment on young patients with advanced colorectal cancer”, Oncol. Lett., vol. 11, no. 3, pp. 2071–2074, 2016, DOI: 10.3892/ol.2016.4179.

X. Wang et al., “Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, Sinoporphyrin sodium”, Theranostics, vol. 5, no. 7, pp. 772–786, 2015, DOI: 10.7150/thno.10853.

J. M. Nauta et al., “Photofrin-mediated photodynamic therapy of chemically-induced premalignant lesions and squamous cell carcinoma of the palatal mucosa in rats”, Int. J. Oral Maxillofac. Surg., vol. 26, no. 3, pp. 223–231, 1997, DOI: 10.1016/S0901-5027(97)80825-9.

C. M. Peterson, R. Reed, C. J. Jolles, K. Parker Jones, R. C. Straight, y A. M. Poulson, “Photodynamic therapy of human ovarian epithelial carcinoma, OVCAR-3, heterotransplanted in the nude mouse”, Am. J. Obstet. Gynecol., vol. 167, no. 6, pp. 1852–1855, 1992, DOI: 10.1016/0002-9378(92)91786-A.

A. Chiaviello, I. Postiglione, y G. Palumbo, “Targets and mechanisms of photodynamic therapy in lung cancer cells: A brief overview”, Cancers (Basel)., vol. 3, no. 1, pp. 1014–1041, 2011, DOI: 10.3390/cancers3011014.

I. Yoon, J. Z. Li, y Y. K. Shim, “Advance in photosensitizers and light delivery for photodynamic therapy”, Clin. Endosc., vol. 46, no. 1, pp. 7–23, 2013, DOI: 10.5946/ce.2013.46.1.7.

A. Orenstein et al., “A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model”, Br. J. Cancer, vol. 73, no. 8, pp. 937–944, 1996, DOI: 10.1038/bjc.1996.185.

M. Rapp, M. Kamp, H. J. Steiger, y M. Sabel, “Endoscopic-Assisted Visualization of 5-Aminolevulinic Acid-Induced Fluorescence in Malignant Glioma Surgery: A Technical Note”, World Neurosurg., vol. 82, no. 1–2, pp. e277–e279, 2014, DOI: 10.1016/j.wneu.2013.07.002.

R. Díez Valle, J. Slof, J. Galván, C. Arza, C. Romariz, y C. Vidal, “Observational, retrospective study of the effectiveness of 5-aminolevulinic acid in malignant glioma surgery in Spain (The VISIONA study)”, Neurol. English Ed., vol. 29, no. 3, pp. 131–138, 2014, DOI: 10.1016/j.nrleng.2013.05.004.

A. Harriman, B. G. Maiya, T. Murai, G. Hemmi, J. L. Sessler, y T. E. Mallouk, “Metallotexaphyrins: A new family of photosensitisers for efficient generation of singlet oxygen”, J. Chem. Soc. Chem. Commun., no. 5, pp. 314–316, 1989, DOI: 10.1039/C39890000314.

S. W. Young et al., “Lutetium texaphyrin (PCI-0123): A near-infrared, water-soluble photosensitizer”, Photochem. Photobiol., vol. 63, no. 6, pp. 892–897, 1996, DOI: 10.1111/j.1751-1097.1996.tb09647.x.

Y. Ye, L. X. Wang, D. P. Zhang, Y. J. Yan, y Z. L. Chen, “Studies on photodynamic mechanism of a novel chlorine derivative (TDPC) and its antitumor effect for photodynamic therapy in vitro and in vivo”, J. Innov. Opt. Health Sci., vol. 8, no. 1, pp. 1–8, 2015, DOI: 10.1142/S1793545815400015.

B. Pucelik, A. Sułek, y J. M. Dąbrowski, “Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications”, Coord. Chem. Rev., vol. 416, 2020, DOI: 10.1016/j.ccr.2020.213340.

F. Sperandio, Y.-Y. Huang, y M. Hamblin, “Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria”, Recent Pat. Antiinfect. Drug Discov., vol. 8, no. 2, pp. 108–120, 2013, DOI: 10.2174/1574891x113089990012.

E. Ranyuk, N. Cauchon, K. Klarskov, B. Guérin, y J. E. Van Lier, “Phthalocyanine-peptide conjugates: Receptor-targeting bifunctional agents for imaging and photodynamic therapy”, J. Med. Chem., vol. 56, no. 4, pp. 1520–1534, 2013, DOI: 10.1021/jm301311c.

P. . Janine D. Miller, M.D. Elma D. Baron, M.D., Heather Scull, M.S., Andrew Hsia, B.A., Jeffrey C. Berlin, Ph.D., Thomas McCormick, Ph.D., Valdir Colussi, Ph.D., Malcolm E. Kenney, Ph.D., Kevin D. Cooper, M.D. y Nancy Oleinick, “Photodynamic Therapy with the Phthalocyanine Photosensitizer”, Jpn. J. Clin. Oncol., vol. 35, no. 3, pp. 316–323, 2019, [Online]. Available: https://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system.%0Ahttp://dx.doi.org/10.1007/s00464-018-6591-4.

R.-M. Ion, “Porphyrins and Phthalocyanines: Photosensitizers and Photocatalysts”, Phthalocyanines Some Curr. Appl., no. June, 2017, DOI: 10.5772/intechopen.68654.

J. R. Darwent, P. Douglas, A. Harriman, G. Porter, y M. C. Richoux, “Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen”, Coord. Chem. Rev., vol. 44, no. 1, pp. 83–126, 1982, DOI: 10.1016/S0010-8545(00)80518-4.

M. Wainwright y K. B. Crossley, “Methylene Blue - A therapeutic dye for all seasons?”, J. Chemother., vol. 14, no. 5, pp. 431–443, 2002, DOI: 10.1179/joc.2002.14.5.431.

S. P. Tseng et al., “Effects of toluidine blue O (TBO)-photodynamic inactivation on community-associated methicillin-resistant Staphylococcus aureus isolates”, J. Microbiol. Immunol. Infect., vol. 50, no. 1, pp. 46–54, 2017, DOI: 10.1016/j.jmii.2014.12.007.

J. P. Tardivo, F. Adami, J. A. Correa, M. A. parecid. S. Pinhal, y M. S. Baptista, “A clinical trial testing the efficacy of PDT in preventing amputation in diabetic patients”, Photodiagnosis Photodyn. Ther., vol. 11, no. 3, pp. 342–350, 2014, DOI: 10.1016/j.pdpdt.2014.04.007.

A. C. B. P. Costa, V. M. C. Rasteiro, C. A. Pereira, R. D. Rossoni, J. C. Junqueira, y A. O. C. Jorge, “The effects of rose bengal- and erythrosine-mediated photodynamic therapy on Candida albicans”, Mycoses, vol. 55, no. 1, pp. 56–63, 2012, DOI: 10.1111/j.1439-0507.2011.02042.x.

N. Xu et al., “Light-activated sealing of skin wounds,” Lasers Surg. Med., vol. 47, no. 1, pp. 17–29, 2015, DOI: 10.1002/lsm.22308.

E. L. Cole, E. Arunkumar, S. Xiao, B. A. Smith, y B. D. Smith, “Water-soluble, deep-red fluorescent squaraine rotaxanes”, Org. Biomol. Chem., vol. 10, no. 30, pp. 5769–5773, 2012, DOI: 10.1039/c2ob06783h.

M. C. García Vior, L. E. Dicelio, y J. Awruch, “Synthesis and properties of phthalocyanine zinc(II) complexes replaced with oxygen and sulfur linked adamantane moieties”, Dye. Pigment., vol. 83, no. 3, pp. 375–380, 2009, DOI: 10.1016/j.dyepig.2009.06.006.

H. Abrahamse y M. R. Hamblin, “New photosensitizers for photodynamic therapy”, Biochemical Journal, vol. 473, no. 4. Portland Press Ltd, pp. 347–364, Feb. 15, 2016, DOI: 10.1042/BJ20150942.

L. B. Josefsen y R. W. Boyle, “Photodynamic therapy: Novel third-generation photosensitizers one step closer?”, Br. J. Pharmacol., vol. 154, no. 1, pp. 1–3, 2008, DOI: 10.1038/bjp.2008.98.

H. Kataoka et al., “New photodynamic therapy with next-generation photosensitizers”, Ann. Transl. Med., vol. 5, no. 8, pp. 1–7, 2017, DOI: 10.21037/atm.2017.03.59.

G. M. F. Calixto, J. Bernegossi, L. M. De Freitas, C. R. Fontana, M. Chorilli, y A. M. Grumezescu, “Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review”, Molecules, vol. 21, no. 3, pp. 1–18, 2016, DOI: 10.3390/molecules21030342.

S. S. Lucky, K. C. Soo, y Y. Zhang, “Nanoparticles in photodynamic therapy”, Chem. Rev., vol. 115, no. 4, pp. 1990–2042, 2015, DOI: 10.1021/cr5004198.

A. Labib, V. Lenaerts, F. Chouinard, J. C. Leroux, R. Ouellet, y J. E. van Lier, “Biodegradable Nanospheres Containing Phthalocyanines and Naphthalocyanines for Targeted Photodynamic Tumor Therapy”, Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists, vol. 8, no. 8. pp. 1027–1031, 1991, DOI: 10.1023/A:1015809124895.

P. R. Wei, Y. Kuthati, R. K. Kankala, y C. H. Lee, “Synthesis and characterization of chitosan-coated near-infrared (NIR) layered double hydroxide-indocyanine green nanocomposites for potential applications in photodynamic therapy”, Int. J. Mol. Sci., vol. 16, no. 9, pp. 20943–20968, 2015, DOI: 10.3390/ijms160920943.

S. H. Voon et al., “Chitosan-coated poly(lactic-co-glycolic acid)- diiodinated boron-dipyrromethene nanoparticles improve tumor selectivity and stealth properties in photodynamic cancer therapy”, J. Biomed. Nanotechnol., vol. 12, no. 7, pp. 1431–1452, 2016, DOI: 10.1166/jbn.2016.2263.

G. M. F. Calixto et al., “Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review”, AAPS PharmSciTech, vol. 20, no. 7. Springer New York LLC, Oct. 01, 2019, DOI: 10.1208/s12249-019-1407-y.

I. Roy et al., “Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy”, J. Am. Chem. Soc., vol. 125, no. 26, pp. 7860–7865, 2003, DOI: 10.1021/ja0343095.

H. W. Kroto, A. W. Allaf, y S. P. Balm, “C60: Buckminsterfullerene”, Chem. Rev., vol. 91, no. 6, pp. 1213–1235, 1991, DOI: 10.1021/cr00006a005.

J. R. Baena, M. Gallego, y M. Valcárcel, “Fullerenes in the analytical sciences”, TrAC - Trends Anal. Chem., vol. 21, no. 3, pp. 187–198, 2002, DOI: 10.1016/S0165-9936(02)00306-0.

R. Lucena, B. M. Simonet, S. Cárdenas, y M. Valcárcel, “Potential of nanoparticles in sample preparation”, J. Chromatogr. A, vol. 1218, no. 4, pp. 620–637, 2011, DOI: 10.1016/j.chroma.2010.10.069.

D. Lu, R. Tao, y Z. Wang, “Carbon-based materials for photodynamic therapy: A mini-review”, Frontiers of Chemical Science and Engineering, vol. 13, no. 2. Higher Education Press, pp. 310–323, Jun. 01, 2019, DOI: 10.1007/s11705-018-1750-7.

I. G. Safonov, P. S. Baran, y D. I. Schuster, “Synthesis and photophysics of a novel porphyrin-C60 hybrid”, Tetrahedron Lett., vol. 38, no. 47, pp. 8133–8136, 1997, DOI: 10.1016/S0040-4039(97)10184-8.

C. Bendicho, C. Bendicho-Lavilla, y I. Lavilla, “Nanoparticle-assisted chemical speciation of trace elements”, TrAC - Trends Anal. Chem., vol. 77, pp. 109–121, 2016, DOI: 10.1016/j.trac.2015.12.015.

K. Scida, P. W. Stege, G. Haby, G. A. Messina, y C. D. García, “Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review”, Anal. Chim. Acta, vol. 691, no. 1–2, pp. 6–17, 2011, DOI: 10.1016/j.aca.2011.02.025.

X. Ma et al., “Single-walled carbon nanotubes alter cytochrome c electron transfer and modulate mitochondrial function”, ACS Nano, vol. 6, no. 12, pp. 10486–10496, 2012, DOI: 10.1021/nn302457v.

U. Sah, K. Sharma, N. Chaudhri, M. Sankar, y P. Gopinath, “Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus”, Colloids Surfaces B Biointerfaces, vol. 162, pp. 108–117, 2018, DOI: 10.1016/j.colsurfb.2017.11.046.

D. C. Hone et al., “Generation of cytotoxic singlet oxygen via phthalocyaninel-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy”, Langmuir, vol. 18, no. 8, pp. 2985–2987, 2002, DOI: 10.1021/la0256230.

I. Marangon, C. Ménard-Moyon, A. K. A. Silva, A. Bianco, N. Luciani, and F. Gazeau, “Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes”, Carbon N. Y., vol. 97, pp. 110–123, 2016, DOI: 10.1016/j.carbon.2015.08.023.

J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi, y H. Dai, “In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake”, J. Am. Chem. Soc., vol. 134, no. 25, pp. 10664–10669, 2012, DOI: 10.1021/ja303737a.

J. T. Robinson et al., “High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes”, Nano Res., vol. 3, no. 11, pp. 779–793, 2010, DOI: 10.1007/s12274-010-0045-1.

K. Albert y H. Y. Hsu, “Carbon-based materials for photo-triggered theranostic applications”, Molecules, vol. 21, no. 11, pp. 1–29, 2016, DOI: 10.3390/molecules21111585.

A. Sahu, W. Il Choi, J. H. Lee, y G. Tae, “Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy”, Biomaterials, vol. 34, no. 26, pp. 6239–6248, 2013, DOI: 10.1016/j.biomaterials.2013.04.066.

X. Qin, H. Zhang, Z. Wang, y Y. Jin, “Magnetic chitosan/graphene oxide composite loaded with novel photosensitizer for enhanced photodynamic therapy”, RSC Adv., vol. 8, no. 19, pp. 10376–10388, 2018, DOI: 10.1039/c8ra00747k.

D. K. Chatterjee y Y. Zhang, “Upconverting nanoparticles as nano-transducers for photodynamic therapy in cancer cells”, Tech. Proc. 2008 NSTI Nanotechnol. Conf. Trade Show, NSTI-Nanotech, Nanotechnol, vol. 2, pp. 69–72, 2008.

H. Du Yamin Yang, Ning Gao, Yue Hu, Chao Jia, Tsengming Chou y Hongjun Wang, “Gold nanoparticle-enhanced photodynamic therapy: effects of surface charge and mitochondrial targeting”, Viability Mesoporous Silica Nanoparticles Drug Deliv., vol. 6, pp. 1239–1241, 2015.

Michalet, X, Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S. y Weiss, S., “Quantum Dots for Live Cells ”, vol. 538, no. 2005, pp. 538–545, 2013, DOI: 10.1126/science.1104274.

A. C. S. Samia, X. Chen, y C. Burda, “Semiconductor Quantum Dots for Photodynamic Therapy”, J. Am. Chem. Soc., vol. 125, no. 51, pp. 15736–15737, 2003, DOI: 10.1021/ja0386905.

E. P. Chizenga y H. Abrahamse, “Nanotechnology in modern photodynamic therapy of cancer: A review of cellular resistance patterns affecting the therapeutic response”, Pharmaceutics, vol. 12, no. 7, pp. 1–21, 2020, DOI: 10.3390/pharmaceutics12070632.

D. Figueroa, “Cómo escribir artículos de Revisión”, Rev. Médica La Paz, vol. 15, no. 1, pp. 63–69, 2009, DOI: 10.1055/s-0037-1606585.

H. Zhang, Y. Shan, y L. Dong, “A comparison of TiO2and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer”, J. Biomed. Nanotechnol., vol. 10, no. 8, pp. 1450–1457, 2014, DOI: 10.1166/jbn.2014.1961.

S. Çeşmeli y C. Biray Avci, “Application of titanium dioxide (TiO2) nanoparticles in cancer therapies”, J. Drug Target., vol. 27, no. 7, pp. 762–766, 2019, DOI: 10.1080/1061186X.2018.1527338.

Hackenberg S., Scherzed, A., Kessler, M. , Froelich, K., Ginzkey, C. , Koehler, C.K., Burghartz, M., Hagen, R. y Kleinsasser, N., “Zinc oxide nanoparticles induce photocatalytic cell death in human head and neck squamous cell carcinoma cell lines in vitro STEPHAN,” Int. J. Oncol., vol. 37, pp. 1583–1590, 2010, DOI: 10.3892/ijo_00000812.

J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, y B. Chen, “The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro,” Nanoscale Res. Lett., vol. 5, no. 6, pp. 1063–1071, 2010, DOI: 10.1007/s11671-010-9603-4.

R. Fujiwara, Y. Luo, T. Sasaki, K. Fujii, H. Ohmori, y H. Kuniyasu, “Cancer therapeutic effects of titanium dioxide nanoparticles are associated with oxidative stress and cytokine induction,” Pathobiology, vol. 82, no. 6, pp. 243–251, 2015, DOI: 10.1159/000439404.

K. D. Patel, R. K. Singh, y H. W. Kim, “Carbon-based nanomaterials as an emerging platform for theranostics,” Mater. Horizons, vol. 6, no. 3, pp. 434–469, 2019, DOI: 10.1039/c8mh00966j.

A. Herreros-López et al., “Nanocrystalline cellulose-fullerene: Novel conjugates,” Carbohydr. Polym., vol. 164, pp. 92–101, 2017, DOI: 10.1016/j.carbpol.2017.01.068.

J. E. Roberts, A. R. Wielgus, W. K. Boyes, U. Andley, y C. F. Chignell, “Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells,” Toxicol. Appl. Pharmacol., vol. 228, no. 1, pp. 49–58, 2008, DOI: 10.1016/j.taap.2007.12.010.

S. Wang, R. Gao, F. Zhou, y M. Selke, “Nanomaterials and singlet oxygen photosensitizers: Potential applications in photodynamic therapy,” J. Mater. Chem., pp. 487–493, 2004, DOI: 10.1039/b311429e.

T. Murakami et al., “Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes,” J. Am. Chem. Soc., vol. 134, no. 43, pp. 17862–17865, 2012, DOI: 10.1021/ja3079972.

L. Wang et al., “Photodynamic effect of functionalized single-walled carbon nanotubes: A potential sensitizer for photodynamic therapy,” Nanoscale, vol. 6, no. 9, pp. 4642–4651, 2014, DOI: 10.1039/c3nr06835h.

C. Y. Chen y R. G. Zepp, “Probing Photosensitization by Functionalized Carbon Nanotubes,” Environ. Sci. Technol., vol. 49, no. 23, pp. 13835–13843, 2015, DOI: 10.1021/acs.est.5b01041.

T. Murakami, “Stimuli-responsive systems of therapeutics photodynamic action of single-walled carbon nanotubes,” Chem. Pharm. Bull., vol. 65, no. 7, pp. 629–636, 2017.

J. Ge et al., “A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation,” Nat. Commun., vol. 5, pp. 1–8, 2014, DOI: 10.1038/ncomms5596.

D. Chen et al., “Efficacy Dependence of Photodynamic Therapy Mediated by Upconversion Nanoparticles: Subcellular Positioning and Irradiation Productivity,” Small, vol. 13, no. 13, pp. 1–11, 2017, DOI: 10.1002/smll.201602053.

V. Biju, S. Mundayoor, R. V. Omkumar, A. Anas, y M. Ishikawa, “Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues,” Biotechnol. Adv., vol. 28, no. 2, pp. 199–213, 2010, DOI: 10.1016/j.biotechadv.2009.11.007.

S. J. He et al., “CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells,” World J. Gastroenterol., vol. 22, no. 21, pp. 5012–5022, 2016, DOI: 10.3748/wjg.v22.i21.5012.

A. C. S. Samia, S. Dayal, y C. Burda, “Quantum Dot-based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy,” Photochem. Photobiol., vol. 82, no. 3, p. 617, 2006, DOI: 10.1562/2005-05-11-ir-525.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2023 Perspectivas de la Ciencia y la Tecnología