Una revisión sobre el análisis de ciclo de vida de la producción de biodiésel a partir de materias primas residuales
PCT-13-1
PDF (Inglés)
EPUB (Inglés)

Palabras clave

grasa animal
producción de biodiésel
análisis de ciclo de vida
materias primas residuales
aceite residual

Cómo citar

[1]
A. Avila Anguis, V. Caltzontzin Rabell, S. I. Martínez Guido, and C. Gutiérrez Antonio, “Una revisión sobre el análisis de ciclo de vida de la producción de biodiésel a partir de materias primas residuales”, PCT, vol. 7, no. 13, pp. 8–25, Jul. 2024, doi: 10.61820/pct.v7i13.1250.

Resumen

Actualmente, la humanidad se enfrenta a diversos retos, tales como el cambio climático, la escasez de agua, la desigualdad, y el hambre, entre otros. Debido a esto, la Organización de las Naciones Unidas en el 2015 aceptó la agenda 2030, que contiene los Objetivos de Desarrollo Sostenible (ODS), con el propósito de proteger el planeta y garantizar el bienestar de todos. Dentro de estos objetivos se encuentra el ODS 7, el cual tiene como meta para el 2030 disponer de energía asequible y no contaminante. Una alternativa para alcanzar este objetivo es el reemplazo del diésel fósil por biodiésel, el cual puede producirse a partir de diversas materias primas. En particular, para la producción de biodiésel, la biomasa residual es una materia prima atractiva debido a su abundancia y elevada disponibilidad, constante generación y bajo costo. Actualmente, se ha estudiado el impacto ambiental de la producción de biocombustibles mediante el análisis del ciclo de vida, el cual es una metodología que permite, de manera objetiva, cuantificar los impactos que puede tener un producto o servicio en el medio ambiente en todas las etapas de su vida. Por lo tanto, el objetivo del presente trabajo es llevar a cabo una revisión de la literatura existente acerca de la evaluación del análisis de ciclo de vida para la producción de biodiésel utilizando materia prima residual. Así, el beneficio resultante de obtener biodiésel a partir de esta puede abarcar aspectos económicos y medioambientales.

PDF (Inglés)
EPUB (Inglés)

Referencias

M. J. Gamez, «Portada», Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/ (accedido 4 de mayo de 2023).

Y. Nocontaminante, «ENERGÍA ASEQUIBLE Y NO CONTAMINANTE»:.

Martin, «Sustainable Development Goals launch in 2016», United Nations Sustainable Development, 30 de diciembre de 2015. https://www.un.org/sustainabledevelopment/blog/2015/12/sustainable-development-goals-kick-off-with-start-of-new-year/ (accedido 18 de mayo de 2023).

A. H. Al-Muhtaseb et al., «Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study», Energy Conversion and Management, vol. 236, p. 114040, may 2021, doi: 10.1016/j.enconman.2021.114040.

Z. L. Chung et al., «Life cycle assessment of waste cooking oil for biodiesel production using waste chicken eggshell derived CaO as catalyst via transesterification», Biocatalysis and Agricultural Biotechnology, vol. 21, p. 101317, sep. 2019, doi: 10.1016/j.bcab.2019.101317.

M. Aghbashlo, M. Tabatabaei, S. Amid, H. Hosseinzadeh-Bandbafha, B. Khoshnevisan, y G. Kianian, «Life cycle assessment analysis of an ultrasound-assisted system converting waste cooking oil into biodiesel», Renewable Energy, vol. 151, pp. 1352-1364, may 2020, doi: 10.1016/j.renene.2019.11.144.

M. N. B. Mohiddin et al., «Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review», Journal of Industrial and Engineering Chemistry, vol. 98, pp. 60-81, jun. 2021, doi: 10.1016/j.jiec.2021.03.036.

S. Morais, T. M. Mata, A. A. Martins, G. A. Pinto, y C. A. V. Costa, «Simulation and life cycle assessment of process design alternatives for biodiesel production from waste vegetable oils», Journal of Cleaner Production, vol. 18, n.o 13, pp. 1251-1259, sep. 2010, doi: 10.1016/j.jclepro.2010.04.014.

E. A. Viornery-Portillo, B. Bravo-Díaz, y V. Y. Mena-Cervantes, «Life cycle assessment and emission analysis of waste cooking oil biodiesel blend and fossil diesel used in a power generator», Fuel, vol. 281, p. 118739, dic. 2020, doi: 10.1016/j.fuel.2020.118739.

Z. Sajid, F. Khan, y Y. Zhang, «Process simulation and life cycle analysis of biodiesel production», Renewable Energy, vol. 85, pp. 945-952, ene. 2016, doi: 10.1016/j.renene.2015.07.046.

L. T. Vargas-Ibáñez, J. J. Cano-Gómez, P. Zwolinski, y D. Evrard, «Environmental assessment of an animal fat based biodiesel: Defining goal, scope and life cycle inventory», Procedia CIRP, vol. 90, pp. 215-219, ene. 2020, doi: 10.1016/j.procir.2020.02.053.

J. Dufour y D. Iribarren, «Life cycle assessment of biodiesel production from free fatty acid-rich wastes», Renewable Energy, vol. 38, n.o 1, pp. 155-162, feb. 2012, doi: 10.1016/j.renene.2011.07.016.

D. Mu, M. Addy, E. Anderson, P. Chen, y R. Ruan, «A life cycle assessment and economic analysis of the Scum-to-Biodiesel technology in wastewater treatment plants», Bioresource Technology, vol. 204, pp. 89-97, mar. 2016, doi: 10.1016/j.biortech.2015.12.063.

Q. Tu y B. E. McDonnell, «Monte Carlo analysis of life cycle energy consumption and greenhouse gas (GHG) emission for biodiesel production from trap grease», Journal of Cleaner Production, vol. 112, pp. 2674-2683, ene. 2016, doi: 10.1016/j.jclepro.2015.10.028.

S. Foteinis, E. Chatzisymeon, A. Litinas, y T. Tsoutsos, «Used-cooking-oil biodiesel: Life cycle assessment and comparison with first- and third-generation biofuel», Renewable Energy, vol. 153, pp. 588-600, jun. 2020, doi: 10.1016/j.renene.2020.02.022.

M. Corral-Bobadilla, R. Lostado-Lorza, F. Somovilla-Gómez, y S. Íñiguez-Macedo, «Life cycle assessment multi-objective optimization for eco-efficient biodiesel production using waste cooking oil», Journal of Cleaner Production, vol. 359, p. 132113, jul. 2022, doi: 10.1016/j.jclepro.2022.132113.

M. Kiehbadroudinezhad, A. Merabet, y H. Hosseinzadeh-Bandbafha, «A life cycle assessment perspective on biodiesel production from fish wastes for green microgrids in a circular bioeconomy», Bioresource Technology Reports, vol. 21, p. 101303, feb. 2023, doi: 10.1016/j.biteb.2022.101303.

K. S. Al-Mawali et al., «Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: A circular bioeconomy approach», Renewable Energy, vol. 170, pp. 832-846, jun. 2021, doi: 10.1016/j.renene.2021.02.027.

A. H. Al-Muhtaseb et al., «Integrating life cycle assessment and characterisation techniques: A case study of biodiesel production utilising waste Prunus Armeniaca seeds (PAS) and a novel catalyst», Journal of Environmental Management, vol. 304, p. 114319, feb. 2022, doi: 10.1016/j.jenvman.2021.114319.

K. K. C. Cárdenas, A. G. Romero-Izquierdo, S. I. Martínez-Guido, y C. Gutiérrez-Antonio, «ANÁLISIS DE CICLO DE VIDA: UNA HERRAMIENTA PARA CONTRIBUIR A LA PRODUCCIÓN SUSTENTABLE DE BIOCOMBUSTIBLES DE AVIACIÓN», Naturaleza y Tecnología, n.o 0, Art. n.o 0, sep. 2022, Accedido: 24 de abril de 2023. [En línea]. Disponible en: http://quimica.ugto.mx/index.php/nyt/article/view/427

A. K. Bhonsle, J. Singh, J. Trivedi, y N. Atray, «Comparative LCA studies of biodiesel produced from used cooking oil using conventional and novel room temperature processes», Bioresource Technology Reports, vol. 18, p. 101072, jun. 2022, doi: 10.1016/j.biteb.2022.101072.

J. Lin, C. W. Babbitt, y T. A. Trabold, «Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells», Bioresource Technology, vol. 128, pp. 495-504, ene. 2013, doi: 10.1016/j.biortech.2012.10.074.

H. Xu, L. Ou, Y. Li, T. R. Hawkins, y M. Wang, «Life Cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel Production in the United States», Environ. Sci. Technol., vol. 56, n.o 12, pp. 7512-7521, jun. 2022, doi: 10.1021/acs.est.2c00289.

A. Forcina, A. Petrillo, M. Travaglioni, S. di Chiara, y F. De Felice, «A comparative life cycle assessment of different spent coffee ground reuse strategies and a sensitivity analysis for verifying the environmental convenience based on the location of sites», Journal of Cleaner Production, vol. 385, p. 135727, ene. 2023, doi: 10.1016/j.jclepro.2022.135727.

C. Seng Liew et al., «Life cycle assessment: Sustainability of biodiesel production from black soldier fly larvae feeding on thermally pre-treated sewage sludge under a tropical country setting», Waste Management, vol. 164, pp. 238-249, jun. 2023, doi: 10.1016/j.wasman.2023.04.013.

S. K. Bhatia et al., «Rhodococcus sp. YHY01 a microbial cell factory for the valorization of waste cooking oil into lipids a feedstock for biodiesel production», Fuel, vol. 301, p. 121070, oct. 2021, doi: 10.1016/j.fuel.2021.121070.

M. Carmona-Cabello, I. L. García, A. Papadaki, E. Tsouko, A. Koutinas, y M. P. Dorado, «Biodiesel production using microbial lipids derived from food waste discarded by catering services», Bioresource Technology, vol. 323, p. 124597, mar. 2021, doi: 10.1016/j.biortech.2020.124597.

E. K. Sitepu, S. Perangin-angin, G. J. Ginting, S. Machmudah, R. N. Sari, y J. B. Tarigan, «Controlled crushing device-intensified direct biodiesel production of Black Soldier Fly larvae», Heliyon, vol. 9, n.o 6, jun. 2023, doi: 10.1016/j.heliyon.2023.e16402.

W. Feng et al., «Polymer functionalization of biochar-based heterogeneous catalyst with acid-base bifunctional catalytic activity for conversion of the insect lipid into biodiesel», Arabian Journal of Chemistry, vol. 16, n.o 7, p. 104814, jul. 2023, doi: 10.1016/j.arabjc.2023.104814.

G. M. Mathew et al., «Recent advances in biodiesel production: Challenges and solutions», Science of The Total Environment, vol. 794, p. 148751, nov. 2021, doi: 10.1016/j.scitotenv.2021.148751.

F. Akram et al., «Current trends in biodiesel production technologies and future progressions: A possible displacement of the petro-diesel», Journal of Cleaner Production, vol. 370, p. 133479, oct. 2022, doi: 10.1016/j.jclepro.2022.133479.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 Perspectivas de la Ciencia y la Tecnología