Efecto de la contaminación atmosférica en los polinizadores del corredor industrial Guanajuato
polinizadores

Versiones

PDF

Palabras clave

Ozono, polinizadores, COVs florales, declive, contaminación del aire.

Cómo citar

[1]
E. Quintana Rodríguez, A. R. Rocha Vallejo, J. de J. Esparza Claudio, J. Hernández Cumplido, and D. Orona Tamayo, “Efecto de la contaminación atmosférica en los polinizadores del corredor industrial Guanajuato: Contaminación área y su relación con el servicio de polinización”, PCT, vol. 7, no. 12, pp. 52–71, Jan. 2024, doi: 10.61820/pct.v7i12.1136.

Resumen

La emisión de contaminantes aéreos debido a la actividad industrial se ha incrementado en las últimas décadas. El corredor industrial del estado de Guanajuato, México no es la excepción, especialmente por las diversas industrias asentadas en esta zona que abarca las municipalidades de Celaya, Salamanca, Irapuato, Silao y León. De manera paralela, la zona también se caracteriza por una alta actividad agrícola con cultivos de importancia que necesitan de insectos y otros animales para su polinización. Los contaminantes como el ozono (O3) tienen efectos negativos sobre la emisión de compuestos orgánicos volátiles (COV´s) emitidos por las flores, los cuales cumplen con funciones de atracción de polinizadores. En esta revisión analizamos los contaminantes principales que se presentan en el corredor industrial, así como sus efectos negativos en el servicio de polinización. Esta información apunta a la urgente necesidad de considerar la contaminación del aire como un factor negativo en el servicio de polinización mediada por insectos.

PDF

Referencias

E. Pacini, “Pollination☆,” in Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2015.

S. G. Potts, T. Breeze, and B. Gemmill-Herren, “Crop Pollination,” in Encyclopedia of Agriculture and Food Systems, N. K. Van Alfen, Ed. Oxford: Academic Press, 2014, pp. 408–418.

D. L. Wagner, R. Fox, D. M. Salcido, and L. A. Dyer, “A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous,” Proc. Natl. Acad. Sci., vol. 118, no. 2, p. e2002549117, 2021.

J. M. W. Ryalls et al., “Anthropogenic air pollutants reduce insect-mediated pollination services,” Environ. Pollut., vol. 297, p. 118847, 2022.

G. Wright and F. Schiestl, “The evolution of floral scent: The influence of olfactory learning by insect pollinators on the honest signalling of floral rewards,” Funct. Ecol., vol. 23, pp. 841–851, Oct. 2009, doi: 10.1111/j.1365-2435.2009.01627.x.

J. A. Riffell et al., “Flower discrimination by pollinators in a dynamic chemical environment,” Science (80-. )., vol. 344, no. 6191, pp. 1515–1518, 2014.

SDAyR, “Diagnóstico agrolístico del Estado de Guanajuato,” 2020.

G. Martin, C. Fontaine, F. Accatino, and E. Porcher, “New indices for rapid assessment of pollination services based on crop yield data: France as a case study,” Ecol. Indic., vol. 101, pp. 355–363, 2019.

N. Dorjay, D. P. Abrol, and B. Vikram, “Effect of Bee Attractants on Foraging Activities of Honeybees Apis mellifera, A. dorsata and A. cerana on Cucumis sativus L. and Memordica charantia L. Flowers,” J. Apic., vol. 2, pp. 123–134, 2022.

S. Debnam, A. Saez, M. A. Aizen, and R. M. Callaway, “Exotic insect pollinators and native pollination systems,” Plant Ecol., vol. 222, no. 9, pp. 1075–1088, 2021.

A. Das, S. Sau, M. K. Pandit, and K. Saha, “A review on: Importance of pollinators in fruit and vegetable production and their collateral jeopardy from agro-chemicals,” J. Entomol. Zool. Stud., vol. 6, no. 4, pp. 1586–1591, 2018.

B. C. Lister and A. Garcia, “Climate-driven declines in arthropod abundance restructure a rainforest food web,” Proc. Natl. Acad. Sci., vol. 115, no. 44, pp. E10397–E10406, 2018.

F. Sánchez-Bayo and K. A. G. Wyckhuys, “Worldwide decline of the entomofauna: A review of its drivers,” Biol. Conserv., vol. 232, pp. 8–27, 2019.

C. A. Hallmann et al., “More than 75 percent decline over 27 years in total flying insect biomass in protected areas,” PLoS One, vol. 12, no. 10, p. e0185809, 2017.

D. N. Alstad, G. F. Edmunds Jr, and L. H. Weinstein, “Effects of air pollutants on insect populations,” Annu. Rev. Entomol., vol. 27, no. 1, pp. 369–384, 1982.

G. G. Thimmegowda et al., “A field-based quantitative analysis of sublethal effects of air pollution on pollinators,” Proc. Natl. Acad. Sci., vol. 117, no. 34, pp. 20653–20661, 2020.

Q. S. McFrederick, J. D. Fuentes, J. C. Kathilankal, and M. Lerdau, “Effects of air pollution on biogenic volatiles and ecological interactions,” Oecologia, vol. 160, no. 3, pp. 411–420, 2009.

Q. Mcfrederick, J. Kathilankal, and J. Fuentes, “Air pollution modifies floral scent trails,” Atmos. Environ., vol. 42, pp. 2336–2348, 2008, doi: 10.1016/j.atmosenv.2007.12.033.

L. Ashworth, M. Quesada, A. Casas, R. Aguilar, and K. Oyama, “Pollinator-dependent food production in Mexico,” Biol. Conserv., vol. 142, no. 5, pp. 1050–1057, 2009.

I. Arzoumanidis, A. Raggi, and L. Petti, “Life cycle assessment of honey: considering the pollination service,” Adm. Sci., vol. 9, no. 1, p. 27, 2019.

K. Dymond, J. L. Celis‐Diez, S. G. Potts, B. G. Howlett, B. K. Willcox, and M. P. D. Garratt, “The role of insect pollinators in avocado production: A global review,” J. Appl. Entomol., vol. 145, no. 5, pp. 369–383, 2021.

A. Waniale et al., “Use of timelapse photography to determine flower opening time and pattern in banana (Musa spp.) for efficient hand pollination,” Sci. Rep., vol. 11, no. 1, pp. 1–9, 2021.

A. Sajjad, W. Akram, W. Muhammad, M. Ahmad, and A. Ahmad, “Pollination in Citrus,” in Citrus Production, CRC Press, 2022, pp. 303–310.

A. Pardo and P. A. V Borges, “Worldwide importance of insect pollination in apple orchards: A review,” Agric. Ecosyst. Environ., vol. 293, p. 106839, 2020.

A. Sabir and H. Kucukbasmaci, “Agronomic response of ‘Michele palieri’(Vitis vinifera L.) table grape to intraspecific diploid and interspecific tetraploid pollinizers,” Sci. Hortic. (Amsterdam)., vol. 272, p. 109589, 2020.

G. MacInnis and J. R. K. Forrest, “Pollination by wild bees yields larger strawberries than pollination by honey bees,” J. Appl. Ecol., vol. 56, no. 4, pp. 824–832, 2019.

M. Toledo-Hernández, T. Tscharntke, A. Tjoa, A. Anshary, B. Cyio, and T. C. Wanger, “Landscape and farm-level management for conservation of potential pollinators in Indonesian cocoa agroforests,” Biol. Conserv., vol. 257, p. 109106, 2021.

SAyDR, “Diagnóstico. Situación actual de los polinizadores en México,” 2021.

O. Cauich, J. J. G. Quezada Euan, V. M. Ramírez, G. R. Valdovinos-Nuñez, and H. Moo-Valle, “Pollination of habanero pepper (Capsicum chinense) and production in enclosures using the stingless bee Nannotrigona perilampoides,” J. Apic. Res., vol. 45, no. 3, pp. 125–130, 2006.

A. Torres-Ruiz, R. W. Jones, and R. A. Barajas, “Present and Potential use of Bees as Managed Pollinators in Mexico1,” Southwest. Entomol., vol. 38, no. 1, pp. 133–148, 2013.

J. J. G. Quezda-Euán, “Native Bees potential on crop polinization,” Acta Biológica Colomb., vol. 14, no. 2, pp. 169–172, 2009.

J. M. Labougle, “Bombus of Mexico and Central America (Hymenoptera, Apidae),” Univ. Kansas Sci. Bull., 1990.

D. Goulson, G. C. Lye, and B. Darvill, “Decline and conservation of bumble bees.,” Annu. Rev. Entomol., vol. 53, pp. 191–208, 2008, doi: 10.1146/annurev.ento.53.103106.093454.

J. L. Villaseñor, “Diversidad y distribución de la familia Asteraceae en México,” Bot. Sci., vol. 96, no. 2, pp. 332–358, 2018.

Ortiz-Guardiola and Sophia Aquetzalli, “Polinizadores del nopal Opuntia engelmanii en el cerro del Topo Chico, General Escobedo, Nuevo León,” Bol. la Soc. Mex. Entomol., vol. 4, no. 3, pp. 58–62, 2018.

E. L. Batista and R. O. Pérez, “Influencia de la abeja melífera en el rendimiento del cultivo de la calabaza (Cucurbita pepo L.),” Cent. Agrícola, vol. 42, no. 2, pp. 47–53, 2015.

V. S. G. García and Á. M. G. Cedeño, “Incidencia de agentes polinizadores sobre la fecundación de la flor del cacao (Theobroma cacao L.),” Rev. ESPAMCIENCIA ISSN 1390-8103, vol. 13, no. 2, pp. 1–12, 2022.

R. E. Trejo-Salazar, E. Scheinvar, and L. E. Eguiarte, “¿ Quién poliniza realmente los agaves? Diversidad de visitantes florales en 3 especies de Agave (Agavoideae: Asparagaceae),” Rev. Mex. Biodivers., vol. 86, no. 2, pp. 358–369, 2015.

M. Hernández-Apolinar, Y. G. de la Rosa, O. Yáñez-Ordóñez, and I. Hinojosa-Díaz, “Identificación de polinizadores naturales de Vanilla planifolia Jacks. ex Andrews.,” AGROProductividad, vol. 9, no. S1, pp. 21–24, 2016.

D. de análisis estratégico SIAP, “Escenario mensual de productos agroalimentarios: Aguacate,” 2022.

M. B. Espinoza et al., “Impactos ambientales y socioeconómicos del cambio de uso del suelo forestal a huertos de aguacate en Michoacán,” CDMX, 2009.

SAGARPA, “Planeación agrícola nacional 2017-2030, Jitomate mexicano,” CDMX, 2017.

D. Timerman and S. C. H. Barrett, “The biomechanics of pollen release: new perspectives on the evolution of wind pollination in angiosperms,” Biol. Rev., vol. 96, no. 5, pp. 2146–2163, 2021.

A. H. Ganie, Z. A. Reshi, and B. A. Wafai, “Quantitative, Qualitative Pollen Сharacters and Pollination Mechanisms: A Case Study of Ten Potamogeton Species,” Inl. Water Biol., pp. 1–7, 2022.

G. Bugin et al., “Agriculture and Pollinating Insects, No Longer a Choice but a Need: EU Agriculture’s Dependence on Pollinators in the 2007–2019 Period,” Sustainability, vol. 14, no. 6, p. 3644, 2022.

M. Kapoor, P. Mawal, V. Sharma, and R. C. Gupta, “Analysis of genetic diversity and population structure in Asparagus species using SSR markers,” J. Genet. Eng. Biotechnol., vol. 18, no. 1, pp. 1–10, 2020.

A. Gaffney, B. Bohman, S. R. Quarrell, P. H. Brown, and G. R. Allen, “Frequent Insect Visitors Are Not Always Pollen Carriers in Hybrid Carrot Pollination,” Insects, vol. 9, no. 2, p. 61, 2018.

A. Dingley et al., “Precision Pollination Strategies for Advancing Horticultural Tomato Crop Production,” Agronomy, vol. 12, no. 2, p. 518, 2022.

K. Seki, “Detection of candidate gene LsACOS5 and development of InDel marker for male sterility by ddRAD-seq and resequencing analysis in lettuce,” Sci. Rep., vol. 12, no. 1, pp. 1–8, 2022.

S. Singh, J. Singh, P. K. Chhuneja, and R. Singh, “Impact of Apis mellifera linnaeus in augmenting seed yield of broccoli, Brassica oleracea var. Italica Plenck,” 2019.

S. D. Divija and P. D. Kamala Jayanthi, “Pollination efficiency and foraging behaviour of honey bees and flies to onion Allium cepa L.,” J. Apic. Res., vol. 61, no. 5, pp. 688–694, 2022.

J. Rosales-Ortiz, “Lidera Guanajuato en exportación de brócoli, coliflor y zanahoria,” Mexicoxport, Irapuato, Nov. 2021.

E. Martinez-Borrego and J. L. Hernández-Pérez, “Integración comercial de los agricultores de la Zona Metropolitana de León, en Guanajuato,” Política y Cult. UAM, vol. 52, pp. 9–37, 2019.

CentroEure, “PROGRAMA DE DESARROLLO URBANO Y ORDENAMIENTO ECOLÓGICO TERRITORIAL DEL MUNICIPIO DE IRAPUATO,” 2020.

P. de concurrencias con las entidades Federeativas, “Compendio de indicadores 2018,” Guanajuato, 2018.

TecnoAgro, “Producción de esparrago,” 2020.

G. del E. de Guanajuato, “Es Guanajuato principal productor de zanahoria del país,” Boletines Guanajuato, Guanajuato, 2022.

SEMARNAT, “Programa de la calidad del aire_Salamanca-Celaya-_Irapuato,” 2022.

SMAOT, “Informe de estado y tendencia de la calidad del aire 2019,” 2019.

SMAOT, “Informe Ambiental del Estado de Guanajuato 2020,” Guanajuato, 2020.

L. Galetto et al., “Risks and opportunities associated with pollinators’ conservation and management of pollination services in Latin America,” 2022.

R. A. Raguso, “Wake Up and Smell the Roses: The Ecology and Evolution of Floral Scent,” Annu. Rev. Ecol. Evol. Syst., vol. 39, no. 1, pp. 549–569, Oct. 2008, doi: 10.1146/annurev.ecolsys.38.091206.095601.

A. Jürgens and M. Bischoff, “Changing odour landscapes: The effect of anthropogenic volatile pollutants on plant–pollinator olfactory communication,” Funct. Ecol., vol. 31, no. 1, pp. 56–64, 2017.

L. Chittka and N. E. Raine, “Recognition of flowers by pollinators,” Curr. Opin. Plant Biol., vol. 9, no. 4, pp. 428–435, 2006, doi: https://doi.org/10.1016/j.pbi.2006.05.002.

E. Agathokleous, Z. Feng, and J. Penuelas, “Ozone pollution disrupts plant–pollinator systems,” Trends Ecol. Evol., vol. 37, no. 11, pp. 939–941, 2022, doi: https://doi.org/10.1016/j.tree.2022.08.004.

M. Vanderplanck et al., “Ozone pollution alters olfaction and behavior of pollinators,” Antioxidants, vol. 10, no. 5, p. 636, 2021.

S. Dötterl, M. Vater, T. Rupp, and A. Held, “Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees,” J. Chem. Ecol., vol. 42, no. 6, pp. 486–489, 2016, doi: 10.1007/s10886-016-0717-8.

J. D. Fuentes, M. Chamecki, T. Roulston, B. Chen, and K. R. Pratt, “Air pollutants degrade floral scents and increase insect foraging times,” Atmos. Environ., vol. 141, pp. 361–374, 2016, doi: https://doi.org/10.1016/j.atmosenv.2016.07.002.

Y. Wang, G. P. Brasseur, and T. Wang, “Segregation of Atmospheric Oxidants in Turbulent Urban Environments,” Atmosphere (Basel)., vol. 13, no. 2, p. 315, 2022.

J. D. Fuentes et al., “Biogenic hydrocarbons in the atmospheric boundary layer: a review,” Bull. Am. Meteorol. Soc., vol. 81, no. 7, pp. 1537–1576, 2000.

H. Hakola, J. Arey, S. M. Aschmann, and R. Atkinson, “Product formation from the gas-phase reactions of OH radicals and O3 with a series of monoterpenes,” J. Atmos. Chem., vol. 18, no. 1, pp. 75–102, 1994, doi: 10.1007/BF00694375.

A. Reissell, C. Harry, S. M. Aschmann, R. Atkinson, and J. Arey, “Formation of acetone from the OH radical- and O3-initiated reactions of a series of monoterpenes,” J. Geophys. Res. Atmos., vol. 104, no. D11, pp. 13869–13879, 1999, doi: https://doi.org/10.1029/1999JD900198.

A. Calogirou, D. Kotzias, and A. Kettrup, “Product analysis of the gas-phase reaction of β-caryophyllene with ozone,” Atmos. Environ., vol. 31, no. 2, pp. 283–285, 1997, doi: https://doi.org/10.1016/1352-2310(96)00190-2.

J. J. Orlando, B. Nozière, G. S. Tyndall, G. E. Orzechowska, S. E. Paulson, and Y. Rudich, “Product studies of the OH- and ozone-initiated oxidation of some monoterpenes,” J. Geophys. Res. Atmos., vol. 105, no. D9, pp. 11561–11572, 2000, doi: https://doi.org/10.1029/2000JD900005.

R. D. Girling, I. Lusebrink, E. Farthing, T. A. Newman, and G. M. Poppy, “Diesel exhaust rapidly degrades floral odours used by honeybees,” Sci. Rep., vol. 3, no. 1, p. 2779, 2013, doi: 10.1038/srep02779.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 Perspectivas de la Ciencia y la Tecnología