Requerimientos para vehículos de superficie no tripulados enfocados al monitoreo de la calidad del agua
portada-PCT11-2
PDF

Palabras clave

Sistema de Monitoreo de la Calidad del Agua
Vehículo de Superficie no Tripulado
IoT
Sistemas Embebidos
Revisión

Cómo citar

[1]
J. C. García Guerrero, “Requerimientos para vehículos de superficie no tripulados enfocados al monitoreo de la calidad del agua”, PCT, vol. 6, no. 11, pp. 16–29, Aug. 2023, doi: 10.61820/pct.v6i11.1089.

Resumen

Los Sistemas de Monitoreo de la Calidad del Agua (WQMS, del inglés Water Quailty Monitoring System) son sistemas enfocados al monitoreo de múltiples parámetros del agua con el fin de verificar su calidad y validar si su uso es apto para un fin determinado. Debido a que en México se han presentado situaciones relacionados con la muerte masivas de peces, las cuales pudieran haber sido prevenidas si se hubiera implementado un monitoreo constante del agua, en este trabajo se presenta las principales características, tipos, ventajas y desventajas de los WQMS. El objetivo de este trabajo es definir los principales requerimientos para la implementación de un WQMS basado en un Vehículo de Superficie no Tripulado (USV, del inglés Unmanned Surface Vehicule) mediante una revisión de la literatura. Estos representan una solución adecuada a la problemática actual en México debido a su bajo costo (en comparación con sistemas basados en una red de sensores) y gran área de censado (en comparación con los sistemas tradicionales). También se presentan los problemas y otros aspectos importantes encontrados en los documentos de la revisión de la literatura. Al final se presenta una propuesta de un USV para el monitoreo de la calidad del agua.

PDF

Referencias

A. Hilary Kelechi et al., “Design and Implementation of a Low-Cost Portable Water Quality Monitoring System,” Computers, Materials & Continua, vol. 69, no. 2, pp. 2405–2424, 2021.

D. Mendez, M. Pérez, A. Farfan, and E. Gerlein, “Idc sensor for low-cost water quality monitoring applications*; [Sensor idc para aplicaciones de bajo costo para el monitoreo de la calidad del agua],” Ingenieria y Universidad, vol. 26, 2022.

M. R. D. Molato, “AquaStat: An Arduino-based Water Quality Monitoring Device for Fish Kill Prevention in Tilapia Aquaculture using Fuzzy Logic,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 2, pp. 557 – 562, 2022.

L. Parra, G. Lloret, J. Lloret, and M. Rodilla, “Physical Sensors for Precision Aquaculture: A Review,” IEEE Sens J, vol. 18, no. 10, pp. 3915–3923, 2018.

F. A. Saparudin et al., “Wireless water quality monitoring system for high density aquaculture application,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, no. 2, pp. 507 – 513, 2019.

K. S. Adu-Manu, F. A. Katsriku, J.-D. Abdulai, and F. Engmann, “Smart River Monitoring Using Wireless Sensor Networks,” Wirel Commun Mob Comput, vol. 2020, 2020.

H.-C. Yu et al., “Development of miniaturized water quality monitoring system using wireless communication,” Sensors (Switzerland), vol. 19, no. 17, 2019.

F. Lezzar, D. Benmerzoug, and I. Kitouni, “IoT for monitoring and control of water quality parameters,” International Journal of Interactive Mobile Technologies, vol. 14, no. 16, pp. 4 – 19, 2020.

A. C. D. S. Junior et al., “Internet of water things: A remote raw water monitoring and control system,” IEEE Access, vol. 9, pp. 35790 – 35800, 2021.

L. V. Q. Danh, D. V. M. Dung, T. H. Danh, and N. C. Ngon, “Design and Deployment of an IoT-Based Water Quality Monitoring System for Aquaculture in Mekong Delta,” International Journal of Mechanical Engineering and Robotics Research, vol. 9, no. 8, pp. 1170–1175, 2020.

J. Zhang et al., “Design and Analysis of a Water Quality Monitoring Data Service Platform,” Computers, Materials & Continua, vol. 66, no. 1, pp. 389–405, 2020.

N. Thai-Nghe, N. Thanh-Hai, and N. C. Ngon, “Deep learning approach for forecasting water quality in IoT systems,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 8, pp. 686 – 693, 2020.

H.-C. Chang et al., “Autonomous water quality monitoring and water surface cleaning for unmanned surface vehicle,” Sensors (Switzerland), vol. 21, no. 4, pp. 1 – 21, 2021.

E. Kim et al., “Comparison of spatial interpolation methods for distribution map an unmanned surface vehicle data for chlorophyll-a monitoring in the stream,” Environ Technol Innov, vol. 28, 2022.

A. Odetti et al., “SWAMP, an Autonomous Surface Vehicle expressly designed for extremely shallow waters,” Ocean Engineering, vol. 216, 2020.

Y. Li et al., “Design and experiments of a water color remote sensing-oriented unmanned surface vehicle,” Sensors (Switzerland), vol. 20, no. 8, 2020.

H. Cao et al., “Intelligentwide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning,” Water (Switzerland), vol. 12, no. 3, 2020.

X. Zhu, K. Yan, S. Kong, and Y. Yue, “4G-based remote manual control for unmanned surface vehicles,” in ACM International Conference Proceeding Series, 2019.

M. D. Asif Hasan, H. Chen, Y. Lin, and X. Liu, “WIPI: An Extendable Edge Platform for Building Time-critical Cyber-Physical-Human Systems,” in ACM International Conference Proceeding Series, 2019.

O. L. Osen et al., “A low cost USV for aqua farm inspection,” in Techno-Ocean 2016: Return to the Oceans, 2016.

M. Zhou and J. Shi, “The Design and Development of an Affordable Unmanned Surface Vehicle for Estuary Research and STEM Education,” in 2020 Global Oceans 2020: Singapore - U.S. Gulf Coast, 2020.

C. Degel et al., “HydroCrawler - An innovative autonomous surface vehicle for high precision underwater measurements,” in OCEANS 2019 - Marseille, OCEANS Marseille 2019, vol. 2019-June, 2019.

S. Garuglieri et al., “An Integrated System for Real-Time Water Monitoring Based on Low Cost Unmanned Surface Vehicles,” in SAS 2019 - 2019 IEEE Sensors Applications Symposium, Conference Proceedings, 2019.

N. Wu and M. Khan, “LoRa-based Internet-of-Things: A Water Quality Monitoring System,” in Conference Proceedings - IEEE SOUTHEASTCON, vol. 2019-April, 2019.

J. Balbuena et al., “Design and Implementation of Unmanned Surface Vehicle for Water Quality Monitoring,” in OCEANS 2017 - Anchorage, vol. 2017-January, 2017.

S. Siyang and T. Kerdcharoen, “Development of unmanned surface vehicle for smart water quality inspector,” in 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2016, 2016.

J. Matos and O. Postolache, “IoT enabled aquatic drone for environmental monitoring,” in Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering, EPE 2016, 2016.

M. L. Seto and A. Crawford, “Autonomous shallow water bathymetric measurements for environmental assessment and safe navigation using USVs,” in OCEANS 2015 - MTS/IEEE Washington, 2015.

M. Li, Y. He, Y. Ma, and J. Yao, “Design and implementation of a new jet-boat based unmanned surface vehicle,” in IET Conference Publications, vol. 2012, no. 598 CP, pp. 768 – 771, 2012.

W.-R. Yang et al., “Multifunctional inshore survey platform with unmanned surface vehicles,” International Journal of Automation and Smart Technology, vol. 1, no. 2, pp. 19 – 25, 2011.

J. Wang, W. Gu, J. Zhu, and J. Zhang, “An Unmanned Surface Vehicle for multi-mission applications,” in Proceedings - 2009 International Conference on Electronic Computer Technology, ICECT 2009, 2009.

Z. Gao, “Research on Information Sensing and Transmitting Technology for Island Using 5G System,” in 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information, ICETCI 2022, 2022.

J. Balbuena et al., “Design and implementation of an USV for large bodies of fresh waters at the highlands of Peru,” in OCEANS 2017 - Anchorage, 2017.

P. Dash et al., “Evaluation of Water Quality Data Collected using a Novel Autonomous Surface Vessel,” in Oceans Conference Record (IEEE), vol. 2021-September, 2021.

D. Sousa, M. Luís, S. Sargento, and A. Pereira, “An aquatic mobile sensing usv swarm with a link quality-based delay tolerant network,” Sensors (Switzerland), vol. 18, no. 10, 2018.

W. Chen et al., “The Mobile Water Quality Monitoring System Based on Low-Power Wide Area Network and Unmanned Surface Vehicle,” Wirel Commun Mob Comput, vol. 2021, 2021.

V. Nikishin, M. Durmanov, and I. Skorik, “Autonomous Unmanned Surface Vehicle for Water Surface Monitoring,” TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 14, pp. 853–858, 2020.

M. Elkolali et al., “A low-cost wave-solar powered Unmanned Surface Vehicle.” Oct. 2021.

È. Pairet et al., “Nukhada USV: a Robot for Autonomous Surveying and Support to Underwater Operations.” Oct. 2022.

A. Totland and E. Johnsen, “Kayak Drone – a silent acoustic unmanned surface vehicle for marine research,” Front Mar Sci, vol. 9, p. 986752, Oct. 2022.

W. Jo et al., “A low-cost and small USV platform for water quality monitoring,” HardwareX, vol. 6, Oct. 2019.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2023 Perspectivas de la Ciencia y la Tecnología