Efecto del elicitores químicos y un físico sobre la actividad antioxidante y antimicrobiana de pimiento
agro-7
PDF

Palabras clave

BIO
Pimiento
Staphylococcus aureus
elicitores
antioxidantes

Cómo citar

[1]
I. Tovar-Zamora, “Efecto del elicitores químicos y un físico sobre la actividad antioxidante y antimicrobiana de pimiento”, PCT, pp. 119–139, Mar. 2024, doi: 10.61820/pct.vi.1074.

Resumen

Capsicum annuum es la especie de chile más cultivada en el mundo. Los frutos de esta especie contienen metabolitos secundarios que pueden ser inducidos mediante la aplicación de elicitores. El objetivo de este estudio fue evaluar el efecto del peróxido de hidrógeno (H2O2), ácido salicílico (AS) y riego deficitario controlado (RDC) sobre las variables fenológicas de la planta y la actividad antioxidante y antimicrobiana in vitro de los frutos de pimiento. El diseño experimental fue completamente al azar y los tratamientos consistieron en aplicación exógena de H2O2 (6, 14, y 18 mM), AS (0.01, 0.1 y 0.5 mM), y RDC (50%). La concentración de fenoles totales, flavonoides y taninos se cuantificó por métodos colorimétricos. Se determinó la actividad antioxidante por los métodos de DPPH (2,2-diphenil-1-picrylhydrazyl) y ABTS (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), además se evaluó la actividad antimicrobiana in vitro contra Staphylococcus aureus. Las concentraciones más altas de fenoles y flavonoides correspondieron a los tratamientos AS 0.5 mM, H2O2 14 mM y 18 mM y RDC 50 %. El mayor nivel de taninos se encontró en los tratamientos AS 0.1 Mm y AS 0.01 mM. La actividad antioxidante fue mayor en los tratamientos con las concentraciones más altas de los elicitores de AS y H2O2. Finalmente, los tratamientos AS 0.01 y 0.5 mM mostraron actividad antimicrobiana contra S. aureus.   Por lo que, la aplicación de AS, H2O2 y RDC 50% fueron una estrategia adecuada para mejorar el crecimiento y desarrollo de la planta de pimiento.

PDF

Referencias

U. Novoa, F. Ortiz, S. Hernández, J. Raya-Pérez, A. Cibrian y E. Enriquez, “Diversidad morfológica del chile piquín (Capsicum annuum L. var. glabriusculum) de Querétaro y Guanajuato, México”. Revista Mexicana de Ciencias Agrícolas, 9:1159–1172, 2018. https://doi.org/10.29312/remexca.v9i6.1581

V. Carvalho-Lemos, J. Reimer y A. Wormit, “Color for Life: Biosynthesis and Distribution of Phenolic Compounds in Pepper (Capsicum annuum)”, Agriculture, 9(4), 81, 2019. https://doi.org/10.3390/agriculture9040081

G. O. Nkansah, J. C. Norman y A. M. Martey, “Growth, Yield and Consumer Acceptance of Sweet Pepper (Capsicum annuum L.) as Influenced by Open Field and Greenhouse Production Systems”, Journal of Horticulture, 4: 216, 2017. https://doi: 10.4172/2376-0354.1000216

F. Fratianni, A. d’ Acierno, A. Cozzolino, P. Spigno, R. Riccardi, F. Raimo, C. Pane, M. Zaccardelli, V. Tranchida Lombardo, M. Tucci, S. Grillo, R. Coppolay F. Nazzaro, “Biochemical Characterization of Traditional Varieties of Sweet Pepper (Capsicum annuum L.) of the Campania Region, Southern Italy”, Antioxidants, 9(6), 556, 2020. https://doi:10.3390/antiox9060556

A. Panche, A. Diwan y S. Chandra, “Flavonoids: An overview", Journal of Nutritional Science, 5: E47, 2016. https://doi.org/10.1017/jns.2016.41

M. Vargas-Hernandez, I. Macias-Bobadilla, R. G. Guevara-Gonzalez, S. de J. Romero-Gomez, E. Rico-Garcia, R. V. Ocampo-Velazquez, L.de L. Alvarez-Arquieta e I. Torres-Pacheco, “Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture”, Frontiers in Plant Science, 8:1762, 2017. https://doi.org/10.3389/fpls.2017.01762

W.-L. Chen y Y.-T. Ko, “Exogenous hydrogen peroxide induces chilling tolerance in Phalaenopsis seedlings through glutathione-related antioxidant system”, Scientia Horticulturae, 289, 110421, 2021. https://doi:10.1016/j.scienta.2021.110421.

M. A. Hossain, S. Bhattacharjee, S. M. Armin, P. Qian, W. Xin, H. Y. Li, D. J. Burritt, M. Fujita y L. Tran, “Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging”, Front. Plant Sci. 6:420, 2015. https://doi: 10.3389/fpls.2015.00420

M. Cano-Lamadrid, I. Giron, R. Pleite, F. Burló, M. Corell, A. Moriana y A. Carbonell-Barrachina, “Quality Attributes of Table Olives as Affected by Regulated Deficit Irrigation”, Lebensmittel-Wissenschaft Und-Technologie 62:19-26, 2015. https://doi.org/10.1016/j.lwt.2014.12.063

E. Coyago-Cruz, M. Corell, C. Stinco, D. Hernanz, A. Moriana y A. J. Meléndez-Martínez, “Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.)”, Food Research International, 96, 2017. http://dx.doi.org/10.1016/j.foodres.2017.03.026.

M. Giacalone, F. Forfori y F. Giunta, “Chapter 20-Chili Pepper Compounds in the Management of Neuropathic Pain”, Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease, 187–195, 2015. https://doi.org/10.1016/B978-0-12-411462-3.00020-5

K. Becker, “Chapter 2 - Pathogenesis of Staphylococcus aureus”. Staphylococcus Aureus, Academic Press, 13–38, 2018. https://doi:10.1016/b978-0-12-809671-0.00002-4

N. Feyissa, T. Alemu, D. Jirata Birri, A. Dessalegn, “Isolation, identification, and determination of antibiogram characteristics of Staphylococcus aureus in cow milk and milk products (yoghurt and cheese) in West Showa Zone, Ethiopia”, International Dairy Journal, V. 137 105503, 2023. https://doi.org/10.1016/j.idairyj.2022.105503

V. Dewanto, X. Wu, K. K. Adom y R. H. Liu, “Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity”, Journal of Agricultural and Food Chemistry, 50:3010–3014, 2002. https://doi.org/10.1021/jf0115589

B. D. Oomah y C. M. Anaberta, “Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L)”, Journal of the Science of Food and Agriculture, 85:935–942, 2005. https://doi.org/10.1002/jsfa.2019

N. Nenadis, L. F. Wang, M. Tsimidou y H. Y. Zhang, “Estimation of scavenging activity of phenolic compounds using the ABT S (*+) assay”, Journal of Agriculture and Food Chemistry, 52:4669-74, 2004. https://doi.org/10.1021/jf0400056

D. Dempsey y D. Klessig, “How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans?”, BMC Biology 15, 2017. https://doi.org/10.1186/s12915-017-0364-8.

M. Vargas-Hernández, I. Torres-Pacheco, F. Gautier, B. Álvarez-Mayorga, A. Cruz-Hernández, L. García-Mier, S. N. Jímenez-García, R. V. Ocampo-Velázquez, A. A. Feregrino-Perez y G. Guevara-Gonzalez, “Influence of hydrogen peroxide foliar applications on in vitro antimicrobial activity in Capsicum chinense” Jacq. Plant Biosystems -An International Journal Dealing with All Aspects of Plant Biology, 151:269–275, 2017. https://doi.org/10.1080/11263504.2016.1168494

W. Poot-Poot, R. Delgado Martínez, S. Castro-Nava, M. Segura-Martínez, A. Carreón-Pérez y J. Hernández-Martínez, “Effect of salicylic acid on pre-transplant acclimatization of native tomato populations”, Horticultura Brasileira, 36:480-485, 2018. https://doi.org/10.1590/s0102-053620180409

Y. Arif, F. Sami, H. Siddiqui, A. Bajguz y S. Hayat, “Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment”, Environmental and Experimental Botany, 104040, 2020. https://doi:10.1016/j.envexpbot.2020.1040

M. Y. Kabir, S. U. Nambeesan, J. Bautista y J. C. Díaz-Pérez, “Effect of irrigation level on plant growth, physiology and fruit yield and quality in bell pepper (Capsicum annuum L.)”, Scientia Horticulturae, 281, 109902, 2021. https://doi:10.1016/j.scienta.2021.109902

H. Nelissen, X. H. Sun, B. Rymen, Y. Jikumaru, M. Kojima, Y. Takebayashi, R. Abbeloos, K. Demuynck, V. Storme, M. Vuylsteke, J. De Block, D. Herman, F. Coppens, S. Maere, Y. Kamiya, H. Sakakibara y G.T.S. Beemster, “The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels”, Plant Biotechnology Journal, 16:615–627, 2018. https://doi.org/10.1111/pbi.12801

M. Świeca, “Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities”, Journal of Chemistry, 2016:1936516, 2016. https://doi.org/10.1155/2016/1936516

D. E. M. Radwan, A. K. Mohamed, K. A. Fayez y A. M. Abdelrahman, “Oxidative stress caused by Basagran® herbicide is altered by salicylic acid treatments in peanut plants”, Heliyon, 5(5), e01791, 2019. https://doi:10.1016/j.heliyon.2019.e01791 [25] A. Kaur y B. Asthir, “Molecular responses to drought stress in plants”, Biologia plantarum 61 (2): 201-209, 2017. https://doi:10.1007/s10535-016-0700-9.

S. Aryal, M.K. Baniya, K. Danekhu, P. Kunwar, R. Gurung y N. Koirala, “Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal”, Plants (Basel, Switzerland) 8:96, 2019. https://doi.org/10.3390/plants8040096.

E. Shalaby y S. Shanab, “Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis”, Indian Journal of Marine Sciences, 42:556–564, 2013.

A. Becerra-Moreno, M. Redondo-Gil, J. Benavides, V. Nair, L. Cisneros-Zevallos y D. A. Jacobo-Velázquez, “Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot”, Frontiers in Plant Science 6:837, 2015. https://doi.org/10.3389/fpls.2015.00837

M. C. Vázquez-Hernández, I. Parola-Contreras, L. M. Montoya-Gómez, I. Torres-Pacheco, D. Schwarz y R. G. Guevara-González, “Eustressors: Chemical and physical stress factors used to enhance vegetables production”, Scientia Horticulturae, 250:223-229, 2015. https://doi.org/10.1016/j.scienta.2019.02.053

E. Marini, G. Magi, M. Mingoia, A. Pugnaloni y B. Facinelli, “Antimicrobial and Anti-Virulence Activity of Capsaicin Against Erythromycin-Resistant”, Cell-Invasive Group a Streptococci, Frontiers in Microbiology, 6:1281, 2015. https://doi.org/10.3389/fmicb.2015.01281

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 Perspectivas de la Ciencia y la Tecnología