Una revisión sobre el papel de la Dinámica Computacional de Fluidos en el análisis de la dispersión de gases tóxicos en plantas químicas
PCT-13-2
PDF
EPUB

Palabras clave

CFD
Dispersión
Gases tóxicos
Plantas químicas
Seguridad de procesos

Cómo citar

[1]
E. Quiroz-Pérez and J. A. de Lira-Flores, “Una revisión sobre el papel de la Dinámica Computacional de Fluidos en el análisis de la dispersión de gases tóxicos en plantas químicas”, PCT, vol. 7, no. 13, pp. 26–61, Jul. 2024, doi: 10.61820/pct.v7i13.1351.

Resumen

La seguridad de procesos desempeña un papel crucial en el diseño y la operación de las plantas químicas. Actualmente, los escenarios que suponen un riesgo en los procesos químicos se deben comprender desde el punto de vista de los fenómenos de transporte de los fluidos involucrados; en específico, la dispersión de gases tóxicos, que ponen en riesgo la salud de los trabajadores. En este sentido, el avance tecnológico y el incremento exponencial de la capacidad de cómputo en las últimas décadas han favorecido las técnicas de dinámica de fluidos computacional (cfd en inglés) por encima de los modelos convencionales de dispersión. Este trabajo describe los fundamentos de las técnicas de cfd complementados con una revisión de estudios sobre esta herramienta computacional en el modelado y la simulación de dispersión de gases tóxicos en plantas químicas. Además, se incluye un caso de estudio demostrativo y una discusión sobre las perspectivas de este enfoque: su estado actual, ventajas, limitaciones y áreas de oportunidad. Estos puntos permiten enfatizar el papel y la importancia de las técnicas de cfd en los análisis de riesgo llevados a cabo en las plantas químicas, especialmente aquellas donde puede ocurrir la fuga y dispersión de gases tóxicos.

PDF
EPUB

Referencias

D. A. Crowl and J. F. Louvar, Chemical Process Safety: Fundamentals with Applications, 2nd. ed., Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002.

R. Shen, Jiao, Z., T. Parker, Y. Sun, and Q. Wang, “Recent application of Computational Fluid Dynamics (CFD) in process safety and loss prevention: A review,” J. Loss Prevent. Proc., vol. 67, Sep. 2020, Art. no. 104252.

S. Bathrinath, J. Devaganesh, B. Santhi and S. Saravanasankar, “The adverse human health effects due to ammonia, hydrogen sulphide and chlorine in process industry: A review,” IJMPERD, vol. 8, pp. 394-402, Aug. 2018.

G. W. Hoyle and E. R. Svendsen, “Persistent effects of chlorine inhalation on respiratory health,” Ann. NY Acad. Sci., vol. 1378, no. 1, pp. 33-40, Jul. 2016.

J. A. Kim, S. Y. Yoon, S. Y. Cho, J. H. Yu, H. S. Kim, G. I. Lim and J. S. Kim, “Acute health effects of accidental chlorine gas exposure,” Ann. Occup. Env. Med., vol. 26, pp. 1-11, Oct. 2014, Art. No. 29.

S. Achanta and S. E. Jordt, “Toxic effects of chlorine gas and potential treatments: A literature review,” Toxicol. Mech. Method., vol. 31, no 4, pp. 244-256, Oct. 2019.

Z. Salamonowicz, M. Majder-Lopatka, A. Dmochowska, W. Rogula-Kozlowska, A. Piechota-Polanczyk, and A. Polanczyk, “Ammonia dispersion in the closed space of an ammonia engine room with forced ventilation in an industrial plant,” Atmosphere (Basel), vol. 13, no. 7, pp. 1062-1089, Jul. 2022.

B. M. Sundblad, B. M. Larsson, F. Acevedo, L. Ernstgård, G. Johanson, K. Larsson and L. Palmberg, “Acute respiratory effects of exposure to ammonia on healthy persons,” Scand. J. Work Env. Hea., vol. 30, no. 4, pp. 313-321, Aug. 2004.

M. S. Yarandi, M. Mahdinia, J. Barazandeh and A. Soltanzadeh, “Evaluation of the toxic effects of ammonia dispersion: Consequence analysis of ammonia leakage in an industrial slaughterhouse,” Med. Gas Res., vol. 11, no. 1, pp. 24-29, Feb. 2021.

D. Leduc, P. Gris, P. Lheureux, P. A. Gevenois, P. De Vuyst and J. C. Yernault, “Acute and long term respiratory damage following inhalation of ammonia,” Thorax, vol. 47, no. 9, pp. 755-757, Sep. 1992.

R. E. de la Hoz, D. P. Schlueter and W. N. Rom, “Chronic lung disease secondary to ammonia inhalation injury: a report on three cases,” Am. J. Ind. Med., vol. 29, no. 2, pp. 209-214, Feb. 1996.

D. P. Kelly, “A review of the inhalation toxicity of hydrogen fluoride,” presented at HOTWC, Albuquerque, NM, USA, May 12-14, 1998.

W. J., Brock, “Hydrogen fluoride: How toxic is toxic? (A hazard and risk analysis),” in Proc. HOTWC, Apr. 1999, pp. 559-566.

J. Y. Na, K. H. Woo, S. Y. Yoon, S. Y. Cho, I. U. Song, J. A. Kim and J. S. Kim, “Acute symptoms after a community hydrogen fluoride spill,” Ann. Occup. Env. Med., vol. 25, pp. 1-12, Sep. 2013.

S. Dugheri, A. Bonari, I. Pompilio, A. Monti, N. Mucci and G. Arcangeli, G., “Innovative monitoring of atmospheric gaseous hydrogen fluoride,” Int. J. Anal. Chem., vol. 2016, Oct. 2016, Art no. 2129053.

B. A. Plog and P. Quinlan, Fundamentals of Industrial Hygiene, 5th. ed. Itasca, IL, USA: NSC Press, 2002.

C. R. Roelofs, E. M. Barbeau, M. J. Ellenbecker and R. Moure-Eraso, “Prevention strategies in industrial hygiene: A critical literature review,” Am. Ind. Hyg. Assoc. J., vol. 64, no. 1, pp. 62-67, Jan. 2003.

American Conference of Governmental Industrial Hygienists (ACGIH), Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinnati, OH, USA: ACGIH Signature Publications, 2023.

Occupational Safety and Health Administration (OSHA), Permissible Exposure Limits - Annotated Tables. [Online] Available: https://www.osha.gov/annotated-pels/ (accesed on 14 February 2024).

Agentes químicos contaminantes del ambiente laboral - Reconocimiento, evaluación y control, Norma Oficial Mexicana NOM-010-STPS-2014, Secretaría del Trabajo y Previsión Social, México, D.F., Abr. 2014. [En línea] Disponible: https://dof.gob.mx/nota_detalle.php?codigo=5342372&fecha=28/04/2014 (accedido el 14 de Febrero de 2024).

R. K. Goyal and N.M. Al-Jurashi, “Gas dispersion models,” J. Loss Prevent. Proc., vol. 4, no. 3, pp. 151-160, Apr. 1991.

F. Pasquill, “The estimation of the dispersion of windborne material,” Meteoro. Mag., vol. 90, pp. 20-49, 1961.

F. A. Gifford, “Use of routine meteorological observations for estimating atmospheric dispersion,” Nucl. Safety, vol. 2, pp. 47-51, 1961.

C. S. Borrego, M. S. Coutinho and M. J. Costa, “Introduction of terrain roughness effects into a Gaussian dispersion model,” Sci. Total Environ., vol. 99, no. 1-2, pp. 153-161, Dec. 1990.

T. O. Spicer and J. A. Havens, “Field test validation of the DEGADIS model,” J. Hazard. Mater., vol. 16, pp. 231-245, 1987.

J. P. Kunsch and T. K. Fanneløp, “Unsteady heat-transfer effects on the spreading and dilution of dense cold clouds,” J. Hazard. Mater., vol. 43, no. 3, pp. 169-193, Oct. 1995.

A. Kumar, A. Mahurkar and A. Joshi, “Study of the spread of a cold instantaneous heavy gas release with surface heat transfer and variable entrainment,” J. Hazard. Mater., vol. 101, no. 2, pp. 157-177, Jul. 2003.

S. R. Hanna, S. Tehranian, B. Carissimo, R. W. Macdonald and R. Lohner, “Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays,” Atmos. Environ., vol. 36, no. 32, pp. 5067-5079, Oct 2002.

J. Xing, Z. Liu, P. Huang, C. Feng, Y. Zhou, D. Zhang and F. Wang, “Experimental and numerical study of the dispersion of carbon dioxide plume,” J. Hazard. Mater., vol. 256, pp. 40-48, Jul. 2013.

P. Dawson, D. E. Stock and B. Lamb, “The numerical simulation of airflow and dispersion in three-dimensional atmospheric recirculation zones,” J. Appl. Meteorol. Clim., vol. 30, no. 7, pp. 1005-1024, Jul. 1991.

J. Wang, X. Yu, and R. Zong, “A dynamic approach for evaluating the consequences of toxic gas dispersion in the chemical plants using CFD and evacuation modelling,” J. Loss Prevent. Proc., vol. 65, May 2020, Art. no. 104156.

M. A. McBride, A. B. Reeves, M. D. Vanderheyden, C. J. Lea and X. X. Zhou, “Use of advanced techniques to model the dispersion of chlorine in complex terrain,” Process Saf. Environ., vol. 79, no. 2, pp 89-102, Mar. 2001.

S. E. Gant and G. T. Atkinson, “Dispersion of the vapour cloud in the Buncefield incident,” Process Saf. Environ., vol. 89, no. 6, pp. 391-403, Nov. 2011.

P. Joshi, P. Bikkina and Q. Wang, “Consequence analysis of accidental release of supercritical carbon dioxide from high pressure pipelines,” Int. J. Greenh. Gas Con., vol. 55, pp. 166-176, Dec. 2016.

S. Sklavounos, and F. Rigas, “Validation of turbulence models in heavy gas dispersion over obstacles,” J. Hazard. Mater., vol. 108, no. 1-2, pp. 9-20, Apr. 2004.

G. Li, J. Wang, M. Wang, Y. Lin, X. Yu and R. Zong, “Experimental and numerical study of heavy gas dispersion in presence of obstacle motion,” Process Saf. Environ., vol. 177, pp. 1494-1505, Sep. 2023.

P. K. Kundu and I. M. Cohen, Fluid Mechanics, 2nd. ed., Orlando, FL, USA: Academic Press, 2002.

H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd. ed., Essex, UK: Pearson Education Limited, 2007.

A. Chakrabarty, S. Mannan and T. Cagin, Multiscale Modeling for Process Safety Applications, Oxford, UK: Butterworth-Heinemann, 2015.

M. Pontiggia, M. Derudi, M. Alba, M. Scaioni, and R. Rota, “Hazardous gas releases in urban areas: Assessment of consequences through CFD modelling,” J. Hazard. Mater., vol. 176, no. 1-3, pp. 589-596, Apr. 2010.

ANSYS Workbench User´s Guide, Release 2023 R2, ANSYS Inc., Canonsburg, PA, USA, 2023.

ANSYS DesignModeler User´s Guide, Release 2023 R2, ANSYS Inc., Canonsburg, PA, USA, 2023.

D.S. Min, S. Choi, E-Y Oh, J. Lee, C. G. Lee, K-Y Choi, and S. Jung, “Numerical modelling for effect of water curtain in mitigating toxic gas release,” J. Loss Prevent. Proc., vol. 63, Jan. 2020, Art. no. 103972.

H. Lim, K. Um and S. Jung, “A study on effective mitigation system for accidental toxic gas releases,” J. Loss Prevent. Proc., vol. 49, part. B, pp. 636-644, Sep. 2017.

V. Busini, V and R. Rota, “Influence of the shape of mitigation barriers on heavy gas dispersion,” J. Loss Prevent. Proc., vol. 29, pp. 13-21, May 2014.

V. Busini, M. Lino, and R. Rota, “Influence of large obstacles and mitigation barriers on heavy gas cloud dispersion: a liquefied natural gas case-study,” Ind. Eng. Chem. Res., vol. 51, no. 22, pp. 7643-7650, Jan. 2012.

M. Siddiqui, S. Jayanti, and T. Swaminathan, “CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation,” J. Hazard. Mater., vol. 209, pp. 177-185, Mar. 2012.

R. Vázquez-Román, C. Díaz-Ovalle, E. Quiroz-Pérez, and M. S. Mannan, “A CFD-based approach for gas detectors allocation,” J. Loss Prevent. Proc., vol. 44, pp. 633-641, Nov. 2016.

B. Andersson, R. Andersson, L. Hakansson, M. Mortensen, R. Sudiyo, B. van Wachem, Computational Fluid Dynamics for Engineers, New York, NY, USA: Cambridge University Press, 2011.

R. Eymard, T. Gallouët, and R. Herbin, “Finite Volume Methods” in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions, Eds., Amsterdam, Netherlands: North Holland Publishing, 2000, pp. 713-1018.

G. Raithby, P. Galpin, and J. van Doormaal, “Prediction of heat and fluid flow in complex geometries using general orthogonal coordinate,” Numer. Heat Tr. A-Appl., vol. 9, no. 2, pp. 125-142, 1986.

ANSYS Meshing User´s Guide, Release 2023 R2, ANSYS Inc., Canonsburg, PA, USA, 2023.

J. Tu, G. H. Yeoh and C. Liu, Computational Fluid Dynamics: A Practical Approach, Oxford, UK: Butterworth-Heinemann, 2018.

L. Dong, H. Zuo, L. Hu, B. Yang, L. Li, and L. Wu, “Simulation of heavy gas dispersion in a large indoor space using CFD model,” J. Loss Prevent. Proc., vol. 46, pp. 1-12, Mar. 2017.

B. Zhang and G-M Chen, “Quantitative risk analysis of toxic gas release caused poisoning - A CFD and dose–response model combined approach,” Process Saf. Environ., vol. 88, no. 4, pp. 253-262, Jul. 2010.

B. Zhang, Y. Liu and S. Qiao, “A quantitative individual risk assessment method in process facilities with toxic gas release hazards: a combined scenario set and CFD approach,” Process Saf. Prog., vol. 38, no. 1, pp. 52-60, Mar. 2019.

R. B. Bird, W. E. Stewart and E. N. Lightfoot, Fenómenos de Transporte, 2nd. ed., México D. F., México: Limusa Wiley, 2006.

P. Kassomenos, A. Karayannis, I. Panagopoulos, S. Karakitsios, and M. Petrakis, “Modelling the dispersion of a toxic substance at a workplace,” Environ. Modell. Softw., vol. 23, no. 1, pp. 82-89, Jan. 2008.

C. Diaz-Ovalle, R. Vazquez-Roman, R. Lesso-Arroyo, and S. Mannan, “A simplified steady-state model for air, water and steam curtains,” J. Loss Prevent. Proc., vol. 25, no 6, pp. 974-981, Nov. 2012.

J. Kuipers, and W. P. M. van Swaaij, “Computational fluid dynamics applied to chemical reaction engineering,” in Advances in Chemical Engineering, New York, NY, USA: Academic Press, 1998.

S. Chen, Z. Zhou, Y. Ma, L. Zhang, T. Wang, S. Wang and Y. Zhang, “Study on hazardous areas of hydrogen fluoride diffusion based on CFD simulation,” Processes, vol. 9, no. 9, Aug. 2021, Art. no. 1545.

W. Wang, D. Mou, B. Sun, C. Zhu and H. Mi, “Characteristics of leakage and diffusion for a chlorine storage tank based on simulation,” ACS Chem. Health Saf., vol. 28, no. 6, pp. 436-443, Aug. 2021.

J. Wang, X. Yu, R. Zong and S. Lu, “Evacuation route optimization under real-time toxic gas dispersion through CFD simulation and Dijkstra algorithm,” J. Loss Prevent. Proc., vol. 76, May 2022, Art. no. 104733.

M. Muscetta, M. Portarapillo, A. Di Benedetto and R. Andreozzi, “Risk analysis of the sodium hypochlorite production process: Focus on the chlorine line,” Chem. Eng. J. Adv., vol. 12, Nov. 2022, Art. no. 100381.

W. Tan, D. Lv, X. Guo, H. Du, L. Liu, and Y. Wang, “Accident consequence calculation of ammonia dispersion in factory area,” J. Loss Prevent. Proc., vol. 67, Sep. 2020, Art. no. 104271.

S. Yuan, J. Cai, G. Reniers, M. Yang, C. Chen, J. Wu, “Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios,” Reliab. Eng. Syst. Safe., vol. 226, Oct. 2022, Art. no. 108719.

A. Horiguchi and S. Numazawa, “Simulation-based risk assessment for the leakage of toxic substances in a chemical plant and the effects on the human body: ethanol as a working model,” J. Toxicol. Sci., vol. 48, no. 5, pp. 285-298, May 2023.

G. Li, J. Wang, M. Wang and R. Zong, “Experimental and numerical study of CO2 plume diffusion in a confined space.” J. Loss Prevent. Proc., vol. 81, Feb. 2023, Art. no. 104949.

ANSYS Fluent User´s Guide, Release 2023 R2, ANSYS Inc., Canonsburg, PA, USA, 2023.

ANSYS Fluent Theory Guide, Release 2023 R2, ANSYS Inc., Canonsburg, PA, USA, 2023.

Z. U. A. Warsi, Fluid Dynamics: Theoretical and Computational Approaches, Boca Raton, FL: CRC Press, 2005.

D. C. Wilcox, Turbulence Modeling for CFD, La Cañada, CA, USA: DCW Industries, Inc., 1994.

B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, Orlando, FL, USA: Academic Press, 1972.

W. Tan, H. Du, L. Liu, T. Su, and X. Liu, “Experimental and numerical study of ammonia leakage and dispersion in a food factory,” J. Loss Prevent. Proc., vol. 47, pp. 129-139, May 2017.

CCPS, Guidelines for Consequence Analysis of Chemical Releases, Hoboken, NJ, USA: John Wiley & Sons, 1999.

S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows” in Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, S. V. Patankar, A. Pollard, A. K. Singhal and S. P. Vanka, Eds., Elmsford, NY, USA: Pergamon Press, 1983, pp. 54-73.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 Perspectivas de la Ciencia y la Tecnología