PädiUAQ https://revistas.uaq.mx/index.php/padi <p> </p> <p><em>PädiUAQ</em> es una revista<span class="s1"> semestral de la Facultad de Ingeniería, publicada por la Universidad Autónoma de Querétaro, a través del Fondo Editorial Universitario, dirigida a investigadores, docentes, estudiantes y profesionales</span>. Los contenidos están asociados con los procesos de enseñanza-aprendizaje curriculares y escolares de Matemáticas, Ciencias Experimentales e Ingeniería.</p> <p> </p> Dirección del Fondo Editorial Universitario, Universidad Autónoma de Querétaro es-ES PädiUAQ Principios para el diseño de tareas en un sistema de evaluación en línea https://revistas.uaq.mx/index.php/padi/article/view/652 <p>En esta contribución se presentarán algunos resultados de tres casos sobre diseño de tareas en sistemas de evaluación en línea y utilizados en contextos virtuales. Con estas tareas se ha estudiado el trabajo matemático personal de los estudiantes. Se analiza cuál es el trabajo matemático a partir de la variación de ciertas variables didácticas de las tareas. Se muestra cómo los registros de representación semiótica y los números que los definen los objetos matemáticos, la apertura de las tareas y el feedback afectan el trabajo matemático.</p> Jorge Luis Gaona Paredes Derechos de autor 2022 PädiUAQ https://creativecommons.org/licenses/by-nc-sa/4.0 2022-07-06 2022-07-06 5 10 e202202 e202202 El Espacio de Trabajo Físico-Matemático como propuesta teórica para analizar los procesos semióticos que se llevan a cabo durante la modelización de un movimiento armónico amortiguado https://revistas.uaq.mx/index.php/padi/article/view/100 <p>El proceso de modelización es muy importante para la enseñanza y el aprendizaje tanto de física como de matemáticas establece su interacción. Aquí proponemos un Espacio de Trabajo Físico-Matemático (ETFM) como una extensión a la teoría de los Espacios de Trabajo Matemático (ETM) porque su estructura permite explicar los procesos que surgen cuando se llevan a cabo este tipo de tareas. Consideramos que la modelización del movimiento de un oscilador armónico amortiguado permite a los estudiantes reflexionar sobre sus propias representaciones. Presentamos los resultados de una implementación didáctica basada en la representación de la construcción, un enfoque pedagógico de investigación dirigido que requiere que los estudiantes interpreten y construyan representaciones de conceptos científicos, declaraciones y procesos. Dado que los estudiantes se organizaron en trabajos en equipo para motivar el debate científico y la autorreflexión, se utilizó la metodología ACODESA. Por otro lado, mostramos elementos que nos permiten dar cuenta de cómo se activaron la génesis semiótica, experimental y discursiva dentro del ETFM. Se discute la relación entre ETFM y ETM. El análisis de los datos de este estudio cualitativo sobre la forma en que un estudiante pasa de la comprensión de un fenómeno físico a su descripción matemática a través de la modelización nos ha permitido proponer una contribución al marco teórico del ETM. Trabajamos con un grupo de 14 estudiantes de ingeniería de segundo semestre de un curso de cálculo integral en una Universidad de la Ciudad de México.</p> Alfredo Martínez Uribe François Pluvinage Luis Manuel Montaño Zetina Derechos de autor 2022 PädiUAQ https://creativecommons.org/licenses/by-nc-sa/4.0 2022-07-06 2022-07-06 5 10 e202203 e202203 Simulación informática de experimentos aleatorios en la interfaz de la probabilidad y la estadística https://revistas.uaq.mx/index.php/padi/article/view/43 <p>&nbsp;&nbsp;&nbsp; Este artículo se centra en el uso y el papel de la simulación informática de experimentos aleatorios en la enseñanza secundaria, tomando el caso de la Francia como ejemplo. De hecho, uno de los aspectos esenciales de la enseñanza de la probabilidad en los centros de secundaria es el lugar que se otorga a la modelización. Vincular un experimento aleatorio real con la teoría de la probabilidad lleva a cuestionar la modelización en términos de proceso. Además, el uso de herramientas tecnológicas (ordenador, calculadora), cada vez más presentes en la enseñanza de las matemáticas, lleva a plantear la cuestión de la modelización de la realidad mediante la simulación de experimentos aleatorios. La transición de los experimentos aleatorios a su simulación es una cuestión importante en la enseñanza de la estadística, ya que permite a los estudiantes acceder al "pensamiento estadístico". El espacio de trabajo matemático de la simulación oculta una ambigüedad fundamental que es la coexistencia de dos dominios diferentes: el de la probabilidad, por supuesto, pero también el de la estadística, que intervienen a su vez en el proceso de resolución de problemas. Es probable que esta ambigüedad cree confusión en los alumnos entre lo que es observacional y lo que es teórico, pero una vez explicada con claridad puede utilizarse para introducir conceptos probabilísticos, basándose en su analogía con conceptos estadísticos ya conocidos.</p> Assia Nechache Bernard Parzysz Derechos de autor 2022 PädiUAQ https://creativecommons.org/licenses/by-nc-sa/4.0 2022-07-06 2022-07-06 5 10 e202204 e202204 Número temático sobre La Teoría de los Espacios de Trabajo Matemático. Presentación https://revistas.uaq.mx/index.php/padi/article/view/787 Rosa Elvira Páez Murillo Derechos de autor 2022 PädiUAQ https://creativecommons.org/licenses/by-nc-sa/4.0 2022-07-06 2022-07-06 5 10 e202201 e202201 Evaluación y resultados del aprendizaje con enfoque en competencias profesionales de Cálculo Diferencial para ingenierías del TecNM https://revistas.uaq.mx/index.php/padi/article/view/300 <p>El tema de competencias por su reciente implementación, ha generado cambios en la concepción de formación, instrucción, docencia y en la evaluación de los aprendizajes, lo que conlleva a nuevos planteamientos en el diseño, desarrollo y evaluación de dicha información. La evaluación de una competencia profesional se evidencia en la exploración, el conocimiento, la comprensión, la aplicación, el análisis, la síntesis y la evaluación de la gestión del proyecto o la actividad académica que el estudiante trabaja, individual o colectivamente, en cada asignatura. En consecuencia, trabajar por competencias significa que el alumno debe entender el aprendizaje como un circuito multidireccional donde tiene que tomar la iniciativa y estimular la capacidad crítica, ética, creativa y sensible en la gestión de su aprendizaje a todos los niveles para favorecer su formación integral. Es por ello la importancia de implementar instrumentos adecuados, que permitan evaluar de manera confiable las competencias adquiridas por los estudiantes. En este trabajo se dan a conocer los resultados que se obtuvieron al implementar en varios grupos de nivel licenciatura en la asignatura de cálculo diferencial, una evaluación con un “enfoque por competencias”. Los resultados obtenidos al final del curso refleja la manera en que la evaluación por competencias logra en los estudiantes una mejor apropiación de los conocimientos adquiridos gracias a lo que conlleva todo este proceso, además de un aumento en el índice de aprobación.</p> Sandra Luz Rodríguez Hernández Victor Larios Osorio Luisa Ramírez Granados Derechos de autor 2022 PädiUAQ https://creativecommons.org/licenses/by-nc-sa/4.0 2022-07-06 2022-07-06 5 10 e202205 e202205 Reflexiones sobre la didáctica de las representaciones moleculares en química orgánica https://revistas.uaq.mx/index.php/padi/article/view/92 <p>Una de las grandes dificultades al estudiar química orgánica es la variedad de diferentes maneras de representación de una misma molécula, por mínimo se puede decir que hay 10 formas de representación molecular. ¿Pero por qué existen tantas formas? ¿Qué problemas conlleva a la práctica docente? La complejidad de las moléculas orgánicas, así como sus reacciones hace necesario tener una variedad de formas de representación para comprender mejor los temas. La gama de representaciones son parte de la didáctica de química orgánica, la finalidad de este artículo es mostrar la gama de representaciones utilizando moléculas comunes en la práctica didáctica, así como indicativas de las diferentes formas de representación semiótica</p> María Luz Núñez Morales Cecilia Hernández Garciadiego Derechos de autor 2022 PädiUAQ https://creativecommons.org/licenses/by-nc-sa/4.0 2022-07-06 2022-07-06 5 10 e202206 e202206