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El analisis de Clifford se enfoca en las llamadas funciones mo-
nogeénicas, reconocidas como generalizaciones naturales de
las funciones holomorfas del plano complejo. Debido a la no
conmutatividad del producto en algebras de Clifford, surgen
las funciones inframonogénicas como version no conmutativa
de las funciones armodnicas. La construccion de operadores
de Dirac con bases ortonormales arbitrarias de R™ posibilita el
surgimiento de una nueva subclase de funciones biarmadnicas
que generalizan a las funciones inframonogénicas. En este
trabajo se tratara la formula integral de Cauchy y un problema
de salto para este tipo de funciones, asi como la conexion con
el sistema de Lamé-Navier. Al finalizar se mostraran problemas
de frontera bien planteados y descomposiciones de Fischer
para el espacio de polinomios R™ [z].

Palabras clave: analisis de Clifford, conjuntos estructurales,
funciones inframonogénicas, operador de Dirac

Clifford analysis focuses in the so-called monogenic functions,
which are recognized as natural generalizations of the holomor-
phic functions of the complex plane. Due to the non-commu-
tativity of the product in Clifford algebras, the inframonogenic
functions arise as a non-commutative version of the harmonic
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Introduccion'

ones. The construction of Dirac operators with arbitrary ortho-
normal bases of R™ makes possible the emergence of a new
subclass of biharmonic functions that generalize to inframono-
genic functions. In this work, a Cauchy integral formula and a
jump problem for this type of functions will be discussed, as
well as the connection with the Lamé-Navier system. At the
end, well-posed boundary problems and Fischer decompo-
sitions for the polynomial space R™ [x] will be shown.

Keywords: Clifford analysis, Dirac operator, inframonogenic
functions, structural sets

El surgimiento de las algebras de Clifford se remonta a 1876,
cuando el matematico inglés William Kingdon Clifford combind
las ideas de William Rowan Hamilton con el algebra exterior
de Hermann Grassmann para introducir el famoso produc-
to geométrico. Lamentablemente, Clifford solo vivié 33 anos
y no pudo divulgar la mayor parte de su obra. Alla por 1880,
Rudolf Lipschitz nota que las reflexiones y rotaciones pueden
ser interpretadas elegantemente usando el algebra propuesta
por Clifford. En 1913, el francés Elie Cartan se percata de que
hay representaciones del grupo especial ortogonal que no son
tensoriales y que tienen una estructura de algebra de Clifford,
conocidas hoy en dia como “fibrados espinoriales”. Hasta este
momento, las ideas abstractas del algebra no habian sido to-
madas en cuenta en el campo de la fisica, y para 1924 se acund
el concepto de “espin de un electréon” para explicar experi-
mentos como el efecto Zeeman andmalo y el experimento de
Stern-Gerlach. Hacia 1925, Erwin Schrédinger descubre la no-
toria ecuacion que lleva su nombre y con la cual se describe la
evolucion temporal de una particula cuantica en el espacio. Dos
anos mas tarde, Wolfgang Pauli logra incluir el concepto de espin
en la ecuacion de Schrédinger mediante sus matrices sigma'y
encuentra la ecuacion no relativista del electron. Las matrices
de Pauli generan el algebra de Clifford Ry 3, descubierta en 1913
por Cartan. Finalmente, en la busqueda de una factorizacion de
la ecuacion de Klein-Gordon, Paul Dirac concibié un operador
diferencial de la forma

3
0= E ’)’iam' P
i=0
tal que

! Este apartado (Introduccion) contiene fragmentos de Alfonso Santiesteban et al. (2025).
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La anterior relacion implicaba lo siguiente:

N=%=7v=-1 %=1 mwyut+tynu=0 Vitj.
Estas condiciones generan el algebra de Clifford Ry 3, la cual
esta asociada al algebra del espacio-tiempo, que es esencial
para comprender la geometria de la relatividad especial de
Einstein. Con los trabajos de Rudolf Fueter, Grigore Moisil, David
Hestenes y Richard Delanghe se constituye una subdisciplina
del analisis matematico, centrada en el estudio de las solu-
ciones nulas del operador de Dirac sobre algebras de Clifford.
En la década de 1970, el norteamericano John Ryan denomind
esta subdisciplina como “analisis de Clifford”, término utilizado
actualmente en la literatura cientifica. Las funciones inframono-
génicas surgen para la solucion de un sistema de ecuaciones
diferenciales parciales de segundo orden:

donde
Q = 6laar:l + 623w2 SFeeo gk Bmaa:m

denota al clasico operador de Dirac sobre R™ y construido
con los generadores {e1, 3, ..., &, } del dlgebra de Clifford R ,,
(Gurlebeck y Sprdssig, 1990). Estas funciones fueron original-
mente introducidas por Malonek et al. (2010) cuando hallaron
una descomposicion de Fischer para el espacio de polinomios
homogéneos en términos de polinomios inframonogénicos.
Los polinomios obtenidos en estas descomposiciones no se
comportaban ortogonales, en general, a diferencia del caso
armonico. Los mismos autores también probaron un teorema
de extension de Cauchy-Kowalevski para este tipo de funciones
(Malonek et al., 2011). Ambas aportaciones son esenciales para
la construccion de bases ortonormales de espacios funcionales
hipercomplejos. Investigaciones actuales (Moreno Garcia et al.,
2017, 2018, 2020) ofrecen interesantes conexiones y aplicacio-
nes de las funciones inframonogénicas en elasticidad lineal.
Existen suficientes razones que justifican el interés de inves-
tigadores por estas peculiares funciones que surgen especifi-
camente por la ausencia de la conmutatividad en el producto
cliffordiano. El operador de Dirac en estas algebras factoriza el



clasico operador de Laplace en el sentido de que se cumple
la relacion §2 = —A. La ecuacion 82 (f) 8 = 0 puede ser vista
como una version no conmutativa de la conocida ecuacion de
Laplace. En el contexto del calculo vectorial, la anterior ecuacion
sandwich restringida a campos vectoriales tridimensionales
f = % puede ser reescrita como

grad(div @) + rot®i = 0.

Puede notarse como la ecuacion de Laplace toma la forma
similar

grad(div @) — rot>d = 0.

El cambio de signo en ambas ecuaciones provoca que la segun-
da de ellas, a diferencia de la primera, sea fuertemente eliptica.

Seaunconjunto ¥ = {¥,, ¥,, ..., ¥,,} ¢ R™Definase el siguien-
te conjunto ¥ := {¥;, ¥, ..., ¥,, }. Actuando sobre C* (22, Rg ,,
donde (2 es un dominio abierto de R™, se exponen los operado-
res de Dirac por la izquierda y por la derecha, respectivamente,
de la forma

2N =3 gk, (N3"= Y. gLus. ()

Sea A el operador de Laplace m-dimensional. Es evidente que
las igualdades

9%9Y (f) = —8%9%(f) = —(f)a%d" = (Ha%¥ = Af @

se cumplen siy solo si ¥;¥; + ¥,;¥; = —2§; ;, donde ¢; ; deno-
ta a la delta de Kronecker. Nétese que la factorizacion en (2)
se tiene cuando y solo cuando ¥ es una base ortonormal de
R™. Un conjunto ¥ con esta propiedad es llamado “conjunto
estructural”. Néno (1983, 1986) y Koriyama et al. (2011) fueron
de los primeros autores en estudiar estas generalizaciones
dentro del analisis cuaternionico y, posteriormente, en el con-
texto cliffordiano (Néno e Inenaga, 1987). El término “conjunto
estructural” se utiliza por vez primera relacionado con el analisis
cuaternionico en los trabajos de Mitelman y Shapiro (1995) y
Shapiro y Vasilevski (1995), mientras que en un ambiente del
andlisis de Clifford se encuentra el trabajo de Shapiro (1988).
Las funciones que anulan a estos operadores de Dirac se co-
nocen como “funciones ¥-hiperholomorfas™.



Metodologia

El uso de conjuntos estructurales arbitrarios posibilita el
estudio de una gran variedad de sistemas de ecuaciones en
derivadas parciales. La ecuacion sandwich generalizada

8% (f)o¥ =0

surge al considerar dos conjuntos estructurales: ¢ y ¥ . Las
soluciones de esta ecuacion son nombradas como “funciones
(p, ¥)-inframonogeénicas” (Alfonso Santiesteban et al., 2022a) y
representan una generalizacion de las ya conocidas funciones
inframnonogénicas. El objetivo del presente trabajo es realizar
una revision detallada de algunos de los principales resultados
obtenidos en la literatura para las funciones (yp, ¥)-inframo-
nogeénicas. Entre ellos consideraremos las representaciones
integrales de Borel-Pompeiu y de Cauchy, las relaciones con
la transformada de Ahlfors-Beurling, el uso de un operador de
Teodorescu para resolver problemas de frontera en dominios
con frontera fractal, la reescritura del sistema de Lamé-Navier,
el planteamiento y resolucion de dos problemas de frontera
bien planteados en el sentido de Hadamard y algunas descom-
posiciones de Fischer. Para una discusion profunda del uso de
dos bases ortonormales simultdneamente referimos al lector a
Abreu Blaya et al. (2015, 2016, 2017) y Bory Reyes et al. (2016).

Los métodos de investigacion empleados en este trabajo se
determinaron con base en los objetivos y las tareas de investiga-
cion planteadas. En particular fueron considerados los siguien-
tes: histdrico-logico, analisis y sintesis, induccion y deduccion,
y a nivel empirico: experimental y modelacion; todos de gran
utilidad en el estudio de fuentes de informacion y el procesa-
miento de los fundamentos cientificos. Se hace necesario el
uso de un cuerpo tedrico enfocado en los temas del algebra no
conmutativa, la geometria fractal, el analisis hipercomplejo y el
calculo fraccionario, que a grandes rasgos incluye el producto
de Fischer, la derivada de Caputo, las relaciones de Weyl, los
operadores Gamma y Euler, el operador fraccionario de Dirac
sobre un fibrado espinorial, la condicion de d-sumabilidad, las
transformadas de Cauchy y de Teodorescu, el [[-operador,
la compacidad de operadores integrales singulares sobre el
espacio de funciones p-integrables, las ecuaciones integrales
de tipo Fredholm y el problema espectral asociado al operador
sandwich. Por ello, en la siguiente seccion se introducen algunas



Nociones preliminares?

nociones basicas relacionadas con las algebras de Clifford y
la teoria de funciones ¥-hipercomplejas.

El algebra real de Clifford Rg ,,, s&e genera mediante la base ca-
nonica {es, e, ..., e } de R™, bajo las reglas de multiplicacion:
e? = —1,ee; = —eje;,4,5 =1,2,...,m,i < j.Layamencionada
algebra asociativa y no conmutativa constituye el espacio lineal
2™-dimensional generado por los k-vectores que forman los

elementos de la base candnica, es decir:
Ro,m = (1,€1,€2, ... €m, €1€2, €1€3, +vey €1 Emy €1€2€3, -y C1€2Em,)-

Las algebras de Clifford tienen innumerables aplicaciones, como
un manejo efectivo de las rotaciones en un espacio de alta di-
mension con el empleo de los llamados “grupos espinoriales”, en
particular el grupo de Lorentz de la relatividad especial. Ademas,
estas algebras permiten reinterpretar y manipular algebraica-
mente muchos conceptos de interés dentro de la fisica tedrica,
la computacion, el andlisis y la geometria.

El espacio euclidiano R™ esta inmerso en el dlgebra de Clifford
Ry, @l identificar cada vector z := (z1, %2, ..., Zm) € R™ con el
vector cliffordiano 2 =} | e;z;. Cualquier elemento a € Ry ,,,
puede ser escrito como g = 3~ , a4e 4 donde a 4 son constan-
tes reales y A recorre todos los posibles conjuntos ordenados
A={1<i1 < " <ip < <m}OA=0QYyea=e;,€, €.
Note que entonces cualquier a € ]RO,m se puede reescribir de
forma unica como a = [a], + [a]; + - - - + [a],,, donde .], denota
la proyeccion de Rg ,, en R( ) . Aqui R( ) denota el subespa-
cio de k-vectores definido por R(k) = spa’nR (ea:|Al =k).Es
costumbre identificar a R con R(O) (los conocidos escalares)
yaR™con R(lzn =~ R™ (el Conjunto de vectores). Los elemen-
tos en R( ) -, son llamados bivectores, y los elementos en ]R((,”:r)b,
pseudoescalares.

El producto de un 1-vector u y un k-vector F), estara dado
por la suma de un (k — 1)-vector y un (k + 1)-vector:

UFy, = [uFy],_, + [UFk]k+1’

donde

[uFe]p ;= § [uFk — (=1)°Fru] Y [uFyl,y = 3 [uFy + (—1)*Ful

2 Este apartado (Nociones preliminares) contiene fragmentos de Alfonso Santiesteban et al. (2025).



Los productos interior y exterior entre u y F}, seran definidos
por u - Fy, := [uF;],_; Y u A Fy := [uFy], ., respectivamente.
La conjugacion en Ry ,,, es definida como el antiautomorfismo
a — a,donde g; = ¢,Vi € {1, ...,m}. Una norma .|| sobre Rg n,
es definida por ||a||* = [aa], para a € Ry ,,,. Observe que para
z € R™ se obtiene que ||z|| = |z, la norma euclidiana usual.

Se consideraran funciones definidas sobre dominios 2 C R™
y con valores en Ry ,,. Estas funciones son escritas como
f =>4 faea, donde f4 son funciones reales. Las nociones
de continuidad, diferenciabilidad e integrabilidad tienen el usual
sentido a través de todas sus componentes reales, es decir,
una funcion f satisface una de estas propiedades si todas sus
componentes reales f4 la satisfacen (Brackx et al., 1982; De-
langhe, 2001; Delanghe et al., 2001; Liu y Hong, 2018). Reciente-
mente, el operador de Dirac ha sido el tema central de estudio
en muchas areas de la matematica y la fisica-matematica. Las
propiedades locales de las soluciones de este operador han
conducido a la teoria de funciones conocida como “analisis de
Clifford” (Gurlebeck y Nguyen, 2014; Liu y Hong, 2018).

El operador de Dirac se define como

. a a a
Q — ela—xl + 62% + ... +€mm

y las funciones que este anula se llaman “funciones monoge-
nicas”. Dicho operador juega el mismo rol en esta teoria que
el clasico operador de Cauchy-Riemann para las funciones
holomorfas del plano complejo. Una funcidon que toma valores
en Ry ,,, definida y diferenciable en un abierto €} de R™, se
denomina “monogénica por la izquierda (monogénica por la
derecha)” en Q2 si @ (f) = 0((f)@=0)en L.

El operador generalizado de Dirac puede construirse consi-
derando una base ortonormal arbitraria de R™ y se define de
la siguiente forma:

m a
Q‘P 2= E (’07‘ 8.’1:1"
i=1

donde ¢ = {1, 2, ..., om } €8 dicha base. En la literatura, como
se menciono en la introduccion, el término “conjunto estructural”
es atribuido a estas bases ortonormales arbitrarias (Shapiro,
1988). De esta forma, se introducen las funciones -hiperho-
lomorfas (por la izquierda o derecha, respectivamente) como
aquellas que pertenecen a Ker [0% (.)]o Ker [(.) 8¥] Se denotara
a los espacios de funciones p-hiperholomorfas por la izquierda y
por la derecha sobre un dominio €2 con las simbologias: M;” ()



y M (2), respectivamente. El operador previo también factoriza

al operador de Laplace, como lo hace el de Dirac estandar.
Dado otro conjunto estructural ¥ = {¥;, ¥,, ..., ¥,, }, recien-

temente se ha estudiado la siguiente subclase de funciones

biarmodnicas:

Sy (2) = {f € C?(2,Rom) : 87 (f) 8¥ = 0}

3

las cuales son denominadas funciones (y, ¥ )-inframonogénicas
(Alfonso Santiesteban et al., 2022a). Las funciones @-hiperho-
lomorfas por la izquierda y ¥-hiperholomorfas por la derecha
son casos particulares de funciones (p, ¥)-inframonogénicas.
Cuandoyp = ¥ = {ey, eq, ..., €, }; |12 Clase anterior se convierte en
la clase de las funciones inframonogeénicas, cuyas interesantes
relaciones con el sistema de Lameé-Navier en elasticidad lineal
y otros temas afines han sido objeto de estudio de varios in-
vestigadores (Alfonso Santiesteban, 2024; Malonek et al., 2010;
Moreno Garcia et al., 2018). Dichas funciones pueden verse
como una version no conmutativa de las conocidas funciones
armonicas, pero se ha comprobado que existen significativas
diferencias entre ambas, como que el problema de Dirichlet
deja de ser bien planteado en el sentido de Hadamard (More-
no Garcia et al,, 2022). Se pueden construir polinomios (y, ¥)
-inframonogénicos sobre dominios elipsoidales tales que en
la frontera se anulan. En la Figura 1 se muestran los espacios
de funciones (p, ¥)-inframonogénicas, ¢-hiperholomorfas por
la izquierda, ¥-hiperholomorfas por la derecha y biarmonicas.
Este ultimo espacio se denotara por B ().



Figura 1.

Espacios de funciones (y, ¥)-inframonogénicas,
p-hiperholomorfas por la izquierda, ¥-hiperholomorfas

por la derecha y biarmoénicas

Fuente: elaboracion propia

Cabe mencionar que el uso de dos conjuntos estructurales arbi-
trarios también posibilita el estudio de una nueva clase de funcio-
nes definidas como las soluciones de la ecuacion 829 (f) = O
Estas funciones se conocen como (p, ¥)-armonicas y cons-
tituyen asimismo un subespacio propio de las biarmdnicas
(Serrano Ricardo et al., 2021). La utilizacidon de conjuntos es-
tructurales permite encontrar nuevas perspectivas en varias
lineas de investigacion relacionadas con mapeos M-conformes,
transformadas de Ahlfors-Beurling, formulas alternativas de Ko-
losov-Muskhelishvili y descomposiciones aditivas de polinomios
contragénicos. Ademas, con los conjuntos estructurales se
pueden reconsiderar desde un punto de vista diferente muchos
problemas antiguos de geometria y analisis, como el reciproco
de una funcién monogénica y la composicion de una funcién
monogénica y una transformacion de Mdbius.

En el siguiente esquema se mostraran algunas relaciones
de jerarquia entre estas clases funcionales a traves de la fac-
torizacion del bilaplaciano mediante los operadores elipticos
8°(.)0% y 8¥9" (.).



Esquema .

Relaciones jerarquicas entre distintas clases funcionales

Fuente: elaboracion propia

Proposicion 1

Demostracion

Una interesante propiedad de las funciones (g, @)-inframono-
génicas, que también poseen las funciones armonicas, es la
presentada por Alfonso Santiesteban et al. (2022b):

Una funcion f es (g, ¢)-inframonogénica en €2 siy solo si cada
componente k-vectorial [f],, 0 < k < m, es (p, p)-inframono-
génica en ().

La implicacion inversa se demuestra gracias a la siguiente des-
composicion aditiva:

& (f)8° = 3 0°[f],.0"

k=0
Es evidente que, si 8% [f], ¥ = 0 para todo k € {0,1, ...,m},
entonces 8¥(f)3¥ = 0. Para la prueba de la implicacion directa
se procede como sigue. La accion del operador generalizado

de Dirac sobre cada componente k-vectorial de la funcion f
puede ser vista como

Qv [f]k :Q(P : [f]k +Q<P/\ [f]k’
donde

0% - [f]k = % (Q(P [f]k - (—l)k [f]k Q‘P)
y

3% Al = 5 (8% [F]i, + (1% [f],,27).



Mediante un calculo sencillo se obtiene que

8 [f1,8° = (~)*@° - 8° A [f], — 8 72 - [f],) € RS,
o sea, el operador §¥(.)3¥ transforma k-vectores en k-vectores.
Si 0¥ f0¥ = 0, entonces

5~ 0% [f],0° = 0.
k=0

Como 9 [f],, 0% € R((,’ffn, entonces necesariamente 9% [f], 8¢ =0
para cada k € {0,1,...,m}, lo que concluye la demostracion.
Sin embargo, esta propiedad no es valida en general para con-
juntos estructurales diferentes. Como un simple contraejemplo,
tomemos la funcion h(z) = (122 + 122 + V22122 — 22) e1e0e3 — 72es
y sean los siguientes dos conjuntos estructurales de
R3: o = {e1,e3e0} Y U = {_g(el +e3), Y2(es — €1), —es \ Por cél-
culos directos es facil comprobar que g% [h] @¥ = 0, mientras
que 9% [h], 0¥ = —2ey # 0y 0¥ [h]; OV = 2e5 # 0. No obstante,
una version débil de la propiedad enunciada en la Proposicion
1 puede ser obtenida. Una funcion f es (p, ¥)-inframonogénica

en () si y solo si sus partes par

fo= 22 Ifl
k—par

e impar

fo= 2 [k
k—impar

también lo son. En el ejemplo anterior descrito evidentemente
se verifica esta propiedad, yaque hy =0y 0°h_0Y =
[iAd [h]l Q\p + 8% [h]3 Q\II = 0.

La solucién fundamental del operador §¥ es dada por
Kyg(z) = 8 [E1(z)], donde E; es la solucion fundamental del
laplaciano m-dimensional. Los nucleos de Cauchy generan los
siguientes dos operadores integrales:

(Th9) (2) = — [, Ko (y — 2)g9(y)dV ()

y
(Cfa,\pg) (z) = [r Koy — z)nw(y)g(n)dS(y), z¢T,

donde 2 es un dominio abierto y simplemente conexo de R™
con una frontera I" suficientemente suave, ng(y) = > ¥ini(y) y
i=1



n;i(y) denota a la i-ésima componente del vector normal, unitario
y exterior aI' en el punto y € I'. Los operadores anteriores son
conocidos como transformadas de Teodorescu y de Cauchy,
respectivamente. Cuando ¢ = ¥, la segunda transformada se
convierte en la transformada integral de Cauchy tradicional
asociada a un conjunto estructural. Intercambiando los nu-
cleos singulares con la funciéon se obtienen las versiones de
los operadores anteriores por la derecha. El teorema de Stokes,
convenientemente usado, conecta estas transformadas de Teo-
dorescu y de Cauchy con una transformada multldlmenS|onaI
de Ahlfors-Beurling definida por [I,.¢ = 87 [T%] (Abreu Blaya
et al., 2016). Se introduciran los siguientes nuevos operadores:

(Co9) @ = fr Koly - 2, @)e@)yy — zo)ds@), O
(Chs) @) = E o Ly Br(y — Dnp@)owis) @) v, &
(Tf,f;gg) (2) = — Jo Koy — )W) (yy — zo)dV (y), ()
(Th59) @ =~ Z @i o Br(y — D)9()dV ()] ¥ ©

donde n, = Z;?;l n;;, siendo n; la i-ésima componente del
vector normal, unitario y exterior sobre la frontera I = 91,
Yg = Yoy yzg =0, ;% A partir de estos se intro-
ducen los siguientes operadores:

ar 1 0
Cowd = 3(C.

r r 2,7 0,r 1,r
© wd+ qu;,\lfg), T, w9 = %(Tw,‘I’g + Tw,‘Pg).

¥,
El primero de estos se identifica como una transformada de
Cauchy (g, ¥)-inframonogénica, mientras que el segundo re-
presenta una generalizacion de la transformnada de Teodorescu
y cumple la siguiente importante relacion de invertibilidad:

o%( (pxpg)atlf -

Se remite al lector a Alfonso Santiesteban et al. (2022a), don-
de se prueba la anterior relacion. Los operadores (3), (4), (5) y
(6) pueden ser concebidos cuando la funcion g aparece a la
izquierda del nucleo y tomarian las siguientes formas:

(co49) @ = fily, — 2 )9mne @ Ke(y — 2)dS(y)

(Chs) @ = ;1 @i [Jr 9(y)ne (y) Eay — zdS(y)] ¥



Problema de salto

Teorema 1
(formula de Borel-Pompeiu)

(72%9) @ = ~ Joly, — 2,)9W)Ke(y ~ 2)dV (),

(Tjjiyg) (z) = - g:l @i [Jo 9@ Br(y — z)dV] ¥,

Las versiones por la izquierda de las transformadas de Teodo-
rescu y de Cauchy (p, ¥)-inframonogénicas se definirian como

il 0,1 1,1 il 0,1 1,1
Ccp,‘l'g - % (qu,‘l’g + O%‘I’g)’ qu,‘llg - % (qu,‘l’g + Tw,\l’g)'

Las anteriores transformadas cumplen las mismas propiedades
que sus analogas por la derecha. En el desarrollo de todo el tra-
bajo se usaran las transformadas en su version por la derecha;
compréndase que resultados similares pueden ser obtenidos
si se asumen las respectivas transformadas por la izquierda.

Sea 2 un dominio abierto y acotado de R™ con una frontera I"
suficientemente suave. Como se ha mencionado anteriormente,
una funcion f € C* (QUT, Ro,m) s € Z, S€ puede representar
como

f=2"4fae4

donde f4 € C* (2 UT, R). Entiéndase una funcion real s-veces
continuamente diferenciable en el cerrado 2 U T como aquella
cuyas derivadas parciales de orden s son continuas en Q y
hasta la frontera de este dominio (Loomis y Sternberg, 1990).

En el estudio de la teoria de funciones (p, ¥)-inframonogé-
nicas, una féormula de tipo Borel-Pompeiu es un elemento fun-
damental. En Alfonso Santiesteban et al. (2022a) se demuestra
la siguiente formula de representacion integral:

Sea fq € C° (QUT, Ry ,,,). Entonces en Q) se tiene que

f@) = (C) (@) + (CL4 (HAY) () + (T540% (AN (@) (V)

Para funciones (p, ¥)-inframonogénicas sobre (), la transfor-
mada de tipo Teodorescu en (7) se anula y se obtiene que los
valores de la funcion en Q) son determinados segun los valo-
res de la funcion y de sus derivadas de primer orden sobre la
frontera del dominio. Este resultado se muestra en el siguiente
corolario que brinda una férmula integral de tipo Cauchy para
estas funciones.



Corolario 1
(formula integral
de Cauchy)

Sea f € C%(Q,Ry,m) NCHOQUT, Ry ,,,) una funcion (p, ¥)-in-
framonogénica en €, entonces esta puede ser representada
como

f@ = (CeN@ + (C7u(NHd¥)(@), zen (8)

La férmula (8) permite resolver de forma inmediata el siguiente
problema de salto:

0°(FEY =0, ze€Q UQ_,
Ft(z) - F (z)= f(z), ze€T,
[(F)3¥]" () - [(#)8"] (z) =g(z), z€T,
F(o0) = ((F)0¥)(0) =0,

donde f, g se asumen como funciones de Hdélder con exponente
0 < v < 1sobreI'. Segun las formulas de Plemelj-Sokhotski y
la representacion (8), se obtiene que la funcion

F(z) = (C5N (@) + (CJly9)(@)

es la solucion del problema de salto anterior. La unicidad de
esta solucion es asegurada por una combinacion de los teo-
remas de Painlevé y de Liouville en analisis de Clifford (Brackx
et al, 1982). Este problema de salto es un caso especifico de
problema de tipo Riemann-Hilbert, cuya resolucion, para casos
generales, se dificulta usando el método tradicional presentado
por Gakhov (1990) debido a que el operador de Dirac aparece
involucrado por diferentes lados de la funcion.

El IT-operador complejo, o transformada de Ahlfors-Beur-
ling, es muy utilizado en analisis complejo en la teoria de ma-
peos cuasiconformes en el plano. Este operador fuertemente
singular se comporta isométrico sobre L2(€)) y, en el sentido
de distribuciones, se tiene que Il [8:1(2)] = 8:h(2) (Ahlfors, 2006;
Banuelos y Janakiraman, 2008; Calderén y Zygmund, 1954;
Donaldson y Sullivan, 1989). Cabe mencionar que algunas ex-
tensiones naturales del [I-operador complejo pueden ser con-
cebidas utilizando la transformada de Teodorescu del analisis
de Clifford (GUrlebeck, 1998; Gurlebeck et al., 1999; Krauss-
har y Malonek, 2001). El operador II;, v puede ser considerado
como una generalizacion multidimensional de [, y muchas de
sus propiedades de invertibilidad y mapeo son descritas por
Abreu Blaya et al. (2016). En nuestro contexto, este operador
tiene la importante caracteristica de que mapea 3, w(£2) sobre



Teorema 2

S, w(2). Una generalizacion de la férmula de Borel-Pompeiu
es la demostrada por Alfonso Santiesteban et al. (2022a) que
se presenta a continuacion:

Sea f € C*(QUT, Ry ,,), entonces

[T, 0 [f1 @) = (C 0 /) (@) + (Cgle(NO*)(2) + (T550” (£)8*) (). ©)

Observe que cuando la funcién es (¢, ¥)-inframonogénica,
se obtiene una representacion de esta transformada de Ahl-
fors-Beurling solo mediante integrales de superficie. Por tanto,
solo basta conocer los valores de la funcién y de sus derivadas
en la frontera para conocer la transformada en todo el dominio.

A continuacion, se mostrara un resultado relacionado con
el problema de salto cuando el dominio tiene frontera fractal
(Alfonso Santiesteban et al., 2022a). En este caso, la técnica
de trabajo esta inspirada en la utilizada por Kats (1983) para las
funciones holomorfas en el plano complejo. Para ello se asume
que la frontera de los dominios satisface la condicion de ser
d-sumable en el sentido de Harrison y Norton (1992). Una curva
+ se dice que es d-sumable si la integral impropia

Ny(T)Td_ldT

S

converge, donde N, (T) representa el nimero minimo de bolas
de radio T necesarias para cubrir v. Ademas de ello, se asu-
miran las trazas del problema sobre la clase de Lipschitz de
orden superior.

Sea k un entero no negativoy 0 < v < 1. Las clases de Lips-
chitz de orden superior, denotadas por la notacion Lip(k + v, y),
consisten en colecciones de funciones continuas reales

f={fil <k}

definidas en  tales que satisfacen las siguientes condiciones
de compatibilidad:

: G+D gy
f(f’)(z)—| 2”3 kf 9 (5 — )| = O(|z — [T
i< ;

donde z,y € I'y|j| < k. En este caso (j) es un multiindice y se
utilizan las notaciones propias para estos. Whitney (1934) probd
que tal coleccion de funciones puede ser extendida mediante
una funcion de Hoélder continuamente diferenciable hasta el
orden k y con exponente v.



Teorema 3
(problema de salto)

Sistema de Lamé-Navier

Las nociones de conjunto d-sumable y de clases de Lips-
chitz de orden superior son extendidas de un modo similar al
contexto multidimensional. El siguiente resultado para el pro-
blema de salto asociado a funciones (y, 1 )-inframonogénicas
es probado por Alfonso Santiesteban et al. (2022a):

Sea f € Lip(1+v,TI")y seaT'd-sumable con vy > £.
Entonces el problema de salto

9°(F)¥ =0, ze€Q, U,
Ft(z)—F ()= f(z), zeT,
(P& (2) - [(F&¥] (2) = (Hd*)(2), zeT,
F(o0) = ((F)8*)(c0) = 0

tiene una solucion dada por

F(z) = f(@)xala) - Ty, [2°()2*] @)

donde Q. y Q2_ denotan respectivamente a los dominios interior
y exterior, X es la funcién caracteristica de Qy f representa la
extension de Whitney para f.

La unicidad del problema de salto para el caso de dominios
fractales no se puede garantizar directamente debido a que
el teorema de Painlevé no es valido para tal nivel de irregulari-
dad geométrica. Sin embargo, para el caso de dominios con
frontera suave, si es posible asegurar la unicidad de la solucién
dada por la formula integral de Cauchy, usando las formulas
de Plemelj-Sokhotski.

El andlisis complejo ha permitido estudiar y resolver problemas
elasticos utilizando las conocidas féormulas de Kolosov-Mus-
khelishvili, mientras que el analisis de Clifford ha ayudado a
reinterpretar elegantemente muchas de las ecuaciones de la
elasticidad lineal desde un contexto multidimensional.

Un campo de desplazamiento tridimensional # en un material
elastico lineal, isdtropo, homogéneo y sin fuerzas de volumen
es descrito por el sistema de Lamé-Navier:

Ly, = pAtd+ (p+ N)grad(divi) = 0, (10)

donde u > 0, A > —2p/3 son los coeficientes de Lamé. Este
sistema fue introducido en 1837 por Gabriel Lamé en el método
de separacion de variables para la solucion de la ecuacion de



onda en coordenadas elipticas (Lamé, 1837). Sus aplicaciones
cubren muchas ramas, como la electrostatica lineal, los siste-
mas hamiltonianos cadticos y la teoria de los condensados de
Bose-Einstein (Malvern, 1969; Marsden y Hughes, 1983; Mus-
khelishvili, 1953; Sokolnikoff, 1958). Estudios recientes lograron
establecer una estrecha relacion entre las soluciones de este
sistema y las funciones inframonogénicas del andlisis de Clifford
(Alfonso Santiesteban et al., 2023a). En Moreno Garcia et al.
(2018) se ha hecho una reescritura del sistema de Lamé-Navier
(10) en términos del operador de Dirac tridimensional:

Faayl = (E52)0,(0)3, + (242)8,0, () = 0. (1)

Por otra parte, en Alfonso Santiesteban et al. (2022b) se ge-
neraliza de una forma natural el sistema (11) para conjuntos
estructurales arbitrarios. Se arribé a dos posibles generaliza-
ciones en R3:

ad?(@)8% + BA¥8% (@) = 0 (12)
Yy
ad?(@)0¥ + $8¥9¥ (@) = 0, (13)

donde @, ¥ son dos conjuntos estructurales y para abre-
viar se usa la notacién a = (g + A)/2, 8 = (3u+ A)/2. Como
consecuencia de las restricciones de Lamé, se tendra que
B8 > a > B/7. Observe que la ecuacion (13) contiene el operador
sandwich generalizado 8%(.)8%y el operador 8°9%(.). Como se
mencionod anteriormente, las funciones que anulan este ultimo
operador también han sido estudiadas y reciben el nombre de
funciones (, ¥)-armonicas (Serrano Ricardo et al., 2021). Se
introduce asi la siguiente clase funcional:

Hpu(2) = {u € C2(Q) : 870% (u) = 0}.

Si los conjuntos estructurales son equivalentes, entonces la
anterior clase funcional se reduce a la clase de funciones ar-
monicas H(£2). Una de las aplicaciones del estudio de estos
sistemas radica en que determinadas soluciones de los siste-
mas de Lamé-Navier no homogéneos son también soluciones
de sistemas generalizados para ciertos conjuntos estructurales
escogidos. Lo anterior permite obtener algunas de las represen-
taciones y teoremas de descomposicion descritos en Alfonso
Santiesteban et al. (2022b).



Teorema 4 Si un campo vectorial # satisface en Q C R? el sistema genera-
lizado de Lamé-Navier (12), entonces este admite en 2 la des-
composicion Unica, salvo un campo vectorial en H(€2) N Ty, ,,(2),
de la forma

d=h+1, (14)
donde h € H(2) 7 € Ty ().

Teorema 5 Sea ¥ que satisface a la generalizacion (12) en Q C R3. Si @
es armonico y (¥, ¥)-inframonogénico en £, entonces este

admite la representacion unica, salvo un campo vectorial
en H, () NJ, ,(92), de la forma

T =h+i, (15)
donde h € H, ,(Q)ei € T, 4(Q).

Teorema 6 Sea i que satisface (12) en Q C R3. Si % es armonico en (), en-
tonces este admite la representacion unica, salvo un campo
vectorial en H,, ,(€2) N Ty ,(€2), de la forma

@=h+i* (16)

donde h € H,, () e i* € Ty, ().

Ejemplo 1.
El campo vectorial tridimensional

U(z) = 3zaxser + (203 — 23 — x3)es + T1€3

satisface el siguiente sistema de Lameé-Navier en presencia de
una fuerza de volumen constante:

0.1x9,ud,+0.2x9,0,u=—0.8¢x

Si se escogen los conjuntos estructurales

© = {639 —€1, 62}

¥ = {es,e1,e2}



se obtiene que

0.1 x 8240% + 0.2 x 8¥F%uE =0

Haciendo uso del Teorema 6 se arriba a la siguiente relacion:

i(z) = h(z) +i*(z)

donde

hz) = 3 [(z2 + 11zoz3)er + (523 — 223 — 22 + z3)e2 + (421 — 2123)€3] —T1T2€1 6263 € Hop 4y (RP)

e

*(z) = } [(—32 — 23033)e1 + (23 — 73 — 207 — 3)es + (7173 — 1) — e3]+T1T2e16263 € Ty L(R®)

Problemas de contorno
bien planteados

La relacién anterior representa una descomposicion aditiva del
vector de desplazamiento @ en términos de dos funciones que
surgen naturalmente en el andlisis de Clifford.

El analisis complejo es bien conocido que las funciones ar-
monicas pueden ser descompuestas en la suma de una funcion
holomorfa y una antiholomorfa. Sin embargo, en general, las
funciones armonicas sobre algebras de Clifford no pueden ser
representadas por la suma de una funcion monogeénica y una
antimonogénica (ver Nguyen, 2015). Ante esto, resulta intere-
sante que a través de sistemas generalizados de Lameé-Navier
se puedan obtener descomposiciones aditivas de funciones
armonicas, cuyas componentes son campos espinoriales esen-
cialmente definidos en algebras de Clifford y que generalizan
a las conocidas funciones monogénicas. Este punto de vista
abre el debate de discusion sobre las posibles estructuras que
puede tener el vector de desplazamiento del sistema elastico.

En Alfonso Santiesteban et al. (2023b) se consideran dos pro-
blemas de frontera para un sistema eliptico de segundo orden
de ecuaciones diferenciales parciales de la forma §(F;)d = f;
en un dominio regular y acotado Q) ¢ R™ donde fz €S Uun campo
k-vectorial continuo. Las condiciones de contorno contienen
al producto interior y exterior de la solucién k-vectorial F3, con
el operador de Dirac y el vector normal n a 952, provocando
que dichos problemas sean bien planteados en el sentido de
Hadamard. Las propiedades espectrales del operador sand-
wich g(-)@ son tratadas utilizando la teoria de Fredholm. Por
ultimo, se muestra que las buenas propiedades obtenidas no



Problema A

Problema B

se satisfacen en el caso mas general cuando se sustituye el
operador de Dirac clasico por operadores asociados a bases
ortonormales arbitrarias del espacio m-dimensional.

En general, el problema de Dirichlet para esta clase de fun-
ciones esta mal planteado en el sentido de Hadamard. La con-
dicion de frontera de Dirichlet no es suficiente para garantizar
un correcto planteamiento de los problemas. Por ello, Alfonso
Santiesteban et al. (2023b) estudiaron dos problemas cuyas
condiciones en la frontera del dominio si garantizaban su buen
planteamiento. Se enunciaran a continuacion y se hara un bre-
ve esbozo de los principales resultados hallados. Sea f;, una
funcion k-vectorial continua sobre el dominio €2, se tienen los
siguientes problemas:

Encontrar en C?(2, Ry ,,) N C1(Q, Ry ,,,) las soluciones de la
ecuacion g(F;, )3 = f que satisfacen las condiciones de fron-
tera:

(RAFy)loa =0, (9 F)|sq=0. (17)

Encontrar en C?(Q2,Rg ) N C1(Q, Ry ,,,) las soluciones de la
ecuacion 9(F;. )@ = fr que satisfacen las condiciones de fron-
tera:

(n-Fi)lag =0, (8AFi)loa = 0. (18)

Estos problemas se pueden interpretar como generalizaciones
multidimensionales de los estudiados por Dzhuraev usando
el analisis vectorial para el operador no fuertemente eliptico
Ai = grad(divi) + rot?# (Dzhuraev, 1992). En estos problemas
la condicion de frontera de tipo Dirichlet y la de Neumann posibi-
litaran la unicidad de la solucion. No obstante, una aproximacion
no estandar a dichos problemas arroja un mal planteamiento en
general. Cabe mencionar que existen suficientes evidencias de
que los problemas A y B, asociados al operador generalizado
Q‘P(.)Q‘ﬁ, pueden comportarse bien planteados sobre dominios
relativamente buenos como la bola unitaria, pero esta conje-
tura sigue estando abierta y es de interés para la comunidad
matematica vinculada al analisis de Clifford.

A continuacion, se tienen las formulas de Stokes que fueron
de gran utilidad en las demostraciones presentadas en Alfonso
Santiesteban et al. (2023b).



Teorema /7
(formulas de Stokes)

Teorema 8
(descomposicion de
Helmholtz-Hodge)

Teorema 9

Sea Fy, ¢ Cl(Q,R(()kT)n), entonces

Jo(@ Fi)(z)dz = [50(n - Fy)(z)dz,
Jo (@A F)(z)dr = [4(n A Fy)(z)dz,

donde

0 F, =1 [0F, — (—1)FF,0]

1
2
y

ONFy =% [0F, + (—1)kF0)

El siguiente teorema brinda una descomposicion de Helm-
holtz-Hodge cuando el dominio es acotado o puede verse
también como una reescritura de la férmula de Borel-Pompeiu
para campos k-vectoriales:

Sea Fy, € CY(Q, Ry ,,) N C(Q, Ry ,,,) Un campo k-vectorial. En-
tonces se evidencia en €2 que

Fi(z) = 8, [Jo Br(y — 2)(8y A Fr)(y)dy — [50 Er(y — z)(n A Fy.)(y)dy]
+0, A [Jo Br(y — 2)(8, - Fr)(y)dy — [50 Er(y — z)(n - Fi)(y)dy]

Un hecho bien conocido del andlisis vectorial es que un campo
vectorial suave esta determinado unicamente por su divergencia
y rotacional sobre el dominio y por su componente normal o
tangencial sobre la frontera (ver Gibbs y Wilson, 1947, p. 243).
Un resultado analogo para el andlisis de Clifford se presentara
en el siguiente teorema probado por Alfonso Santiesteban et
al. (2023b):

Un campo k-vectorial suave Fy, € C1(Q, Ry ,,,)esta determinado
unicamente en un dominio regular y acotado (2, cuando @ - F,
y 0 A F;, son dados en ) como también n - F}, 0 n A F}, sobre
la frontera.

Mediante un procedimiento laborioso se obtuvo el siguiente
resultado principal:



Teorema 10 Sea fi, € LP(Q, Ry ) con p > 1. Entonces, los problemas Ay B
son unicamente solubles y sus soluciones son representadas
mediante un operador integral, lineal y compacto en LP(Q, Rg ,y, )-

El anterior resultado ofrece la posibilidad de resolver el res-
pectivo problema espectral asociado al operador sandwich.
Mediante una secuencia de razonamientos y calculos inmedia-
tos se pudo arribar a que las funciones propias del problema
espectral son soluciones de la siguiente ecuacion de Fredholm
simétrica:

F(z) — A [o K(z,y) Fr(y)dy = 0,

donde K es un nucleo singular débil y escalar. Como se men-
ciono anteriormente, la aproximacion no estandar a estos
problemas mediante operadores de Dirac generalizados es
de poco interés, en el sentido de que los problemas que se
obtienen estan mal planteados segun Hadamard. Sin embargo,
se pueden ofrecer ejemplos donde se aprecia lo interesante
que resulta considerar conjuntos estructurales no equivalentes
en el planteamiento de los problemas. El principal obstaculo
para el buen planteamiento de los problemas asociados a di-
ferentes conjuntos estructurales reside en que el problema de
primer orden

(8% Fi)la =0,
(8% A Fi)la =0,
Filoa =0,

puede poseer soluciones no triviales en 2. No obstante, como
ya se habia comentado, se conjetura que, sobre dominios par-
ticulares como la bola, este sistema de primer orden si se com-
porta bien planteado en el sentido de Hadamard. Note que,
para conjuntos estructurales equivalentes, el anterior sistema
se reduce al problema de Dirichlet para las funciones mono-
genicas, el cual se conoce que esta bien planteado.

Descomposicion de Fischer® En 1917, el matematico vienés Ernst Fischer prueba que, dado
un polinomio homogéneo de cualquier grado g(x) con z € R™,
entonces todo polinomio homogéneo P, (x) de grado arbitrario
k e independiente de la dimensidon m puede ser descompuesto

° Este apartado (Descomposicion de Fischer) contiene fragmentos de Alfonso Santiesteban et al. (2025).



unicamente como P,(z) = Qr(z) + g(z)R(x), donde Qr(z) es
un polinomio homogéneo de grado &k que satisface la ecua-
cion ¢(9)Qr(z) = 0y R(z) es un polinomio homogéneo de un
grado adecuado. Aqui, g(Q) es el operador diferencial que se
tiene al reemplazar en el polinomio g cada variable z; por la
correspondiente derivada parcial 9,,; (identificacion de Fourier).
Hoy en dia, esta descomposicion lleva su nombre.

Los portugueses Kahler y Vieira (2014) introdujeron en su mo-
mento un operador de Dirac fraccionario utilizando la derivada
de Caputo y unas relaciones de Weyl. En Alfonso Santiesteban
et al. (2024) se definié un nuevo operador de Dirac fraccionario
construido con un conjunto estructural ¢, para luego obtener
una descomposicion de Fischer en términos de funciones
(p, ¥)-inframonogénicas. Como consecuencia de la ausencia
de conmutatividad, se mostraron algunas caracteristicas que
difieren generalmente de las que se conocen en el clasico caso
armonico. Finalmente, se probaron algunas descomposiciones
mediante otras clases de funciones surgidas en el contexto del
analisis de Clifford y que se vinculan estrechamente con las
funciones inframonogénicas.

El operador de Dirac definido en Alfonso Santiesteban et al.
(2024) y la variable fraccionaria generan una superalgebra de
Lie isomorfa a osp (1|2). La superalgebra de Lie osp (1|2) esta
definida por tres generadores bosoénicos o pares ET, E~, H
(que llevan estados bosodnicos a estados bosodnicos y estados
fermidnicos a estados fermidnicos) y dos generadores fer-
midnicos o impares F+, F~ (que llevan estados bosdnicos a
estados fermidnicos y viceversa), sujetos a las relaciones de
conmutacion en la base de Cartan-Weyl:

[H, B*| = +E*, [H,F*|=+3F*, [B% F¥]=—F%,
[E+,E7]=2H, {F*,F"}=3H, {F*F*}=%3F%
[E£, FE] =0.

Dicha superalgebra se presenta en los modelos minimales

superconformes y en la cuantizacion de la supergravedad.
Un producto escalar (., .) en el espacio de polinomios homo-

géneos de grado £, el cual se denotara por P(k), es definido por

(P, Qr) = [Pr(0)Qrly, Pr,Qr € P(k)



Teorema 11

Este producto es conocido como “producto de Fischer” y cum-
ple las siguientes dos propiedades importantes a causa de dos
conjuntos estructurales ¢ y ¥

(T Pri—2Ty, Qr) = (Pe2,87(Q)8Y), (TyTpPr—2, Qr) = (Pr_2,078%(Q1)),

donde Ty = Y iy Qills, Ty = > oo Yiiy Pr_g € P(k — 2).
Dendtese por Z, (k) C P(k) al conjunto de todos los poli-
nomios homogéneos (y, ¥)-inframonogénicos de grado k. El
siguiente teorema brinda una descomposicion de Fischer por
polinomios de este tipo:

Sea k > 2, entonces la siguiente descomposicion se cumple:
P(k) =T, (k) Dz, Pk — 2)zy.

Ademas, los subespacios Z, (k) y ,P(k — 2)z, son orto-
gonales con respecto al producto de Fischer y se obtiene la
siguiente descomposicion completa:

15
Pk) = @ z3Zp4(k — 25)2
0

5=

donde |-] denota a la conocida funcién piso.
Sobre el producto tensorial C,,, = C@ Ro,m, y SiENd0 0 < o < 1,
se introducen los siguientes vectores fraccionarios:

s

(87 o
Lo ‘ PiT;

7

con

exp(aln|z;]); z; > 0,
qhs — 0; z; =0,
exp(aln|z;| + iam); z; <O0.

Remitimos al lector a consultar el trabajo preliminar de Kahler y
Vieira (2014), que aborda muchas de estas ideas del analisis de
Clifford fraccionario. Se define el operador de Dirac fraccionario
con respecto al conjunto estructural ¢ de la siguiente forma:

o8 = Zl 0; 505
]:



donde _C;a;t denota la derivada de Caputo con respecto a T

o
(907.5) 0) = ey | a3t o 25

Con el fin de arribar a una descomposicion fraccionaria, sean
las relaciones de Weyl:

[9;6;",:53"] = 9;6;?‘300‘ — 5 +30‘ =oal'(a), Vje{l,..m}

El vector variable fraccionario z7 y el operador de Dirac &%,
generan una superalgebra de Lie finita dimensional e isomorfa
a osp(1/2), la cual es una extension gradual del algebra de Lie
SL(2) (matrices reales de 2 x 2 con traza nula con el corche-
te de Lie dado por el conmutador, mismas que se asocian
al grupo especial lineal SL(2) de matrices con determinante
igual a 1). Puede considerarse la mas simple y ser vista como
la version supersimétrica de SL(2). La version afin de osp(1|2)
relacionada con los modelos minimales superconformes por
el procedimiento de reduccion hamiltoniana también aparece
en la cuantizacion de la supergravedad en dos dimensiones y
su version topoldgica. Algunos de los modelos que surgen de
esta superalgebra estan ligados a las supercuerdas no-criticas
de Ramond-Neveu-Schwarz con tan solo poner un ejemplo.

Denotaremos por I1,, (1) al espacio de polinomios homogé-
neos fraccionarios de grado [ que satisfacen E*P;, = al'(a)lP;,
donde E* = YT, ¢ 0¢ es el operador fraccionario de Euler.
En efecto, la renormalizacion

He = LB+ 2E@m) - (Beyt = LaT(a)|z2?, (E®)~ = —Lal(a)A%, (Fo)t= 5ol (a)zg, (F*)™ = sial(a)d%

conduce a las relaciones de conmutacion estandar que ge-
neran a osp(1|2).

Sea ahora z3 () el subespacio cerrado de I1,, (/) que con-
tiene alos pollnomlos (p, ¥)-inframonogénicos fraccionarios, o
sea, tales que 9¢(P;)8% = 0. Como consecuencia del andlisis
y del calculo de numerosas relaciones que surgen entre el
nuevo operador de Dirac y la variable fraccionaria, se obtiene
el siguiente resultado que puede consultarse en Alfonso San-
tiesteban et al. (2024):



Teorema 12
(descomposicion fraccionaria
de Fischer completa)

Discusion de resultados

Para | > 2, la siguiente descomposicion es valida:

2]

o (l) = @0 (23)°L5 (L — 28)(x3)°

A diferencia del caso armonico y monogeénico, en general, los
polinomios representados en la anterior descomposicion no
son mutuamente ortogonales con respecto al producto de Fis-
cher. Sin embargo, si se puede garantizar la ortogonalidad de
los polinomios (23)” I;_ap ()P y (22)? I1_a4(x3)? para cuando
0 < p,q < |£|con|p— g| > 2. Si denotamos por H$,¢(l) al subes-
pacio de I1,, (1) que contiene a los polinomios (¢, ¥ )-armoénicos
fraccionarios P, tales que 828%(P;) = 0, entonces, siguiendo un
procedimiento analogo, resulta otra descomposicion paral > 2

2]

a(l) = EPO (zgxg) MG (1 — 2s),

No obstante, la ortogonalidad de los polinomios en la repre-
sentacion anterior se pierde incluso para cuando |p — gq| > 2y
m > 2. En el dlgebra Rg » ~ H(R)si se tiene que los polinomios
de la descomposicion completa de Fischer son mutuamente
ortogonales. Esta algebra es muy particular y suceden estos
hechos curiosos que difieren de los obtenidos para dimensiones
superiores. Para profundizar en las pruebas de estos resultados
se remite al lector al trabajo reciente de Alfonso Santiesteban
et al. (2024).

La consideracion de conjuntos estructurales permite obtener una
familia amplia de ecuaciones diferenciales parciales que agru-
pan conocidas ecuaciones de la fisica-matematica. Asimismo,
el elevado grado de flexibilidad que supone considerar conjun-
tos estructurales arbitrarios posibilita agrupar, de una manera
refinada, una variedad de sistemas de ecuaciones en derivadas
parciales que tienen una estrecha relacion con la ecuacion de
Laplace, formulas alternativas de Kolosov-Muskhelishvili en elas-
ticidad lineal, transformadas de Ahlfors-Beurling, 3-problemas
y mapeos conformes (Abreu Blaya et al., 2016; Alfonso San-
tiesteban et al., 2022b; Serrano Ricardo et al., 2021).

Cuando se consideran conjuntos estructurales arbitrarios, el
operador sandwich generalizado §*(.)3% no mantiene invariante
el espacio de campos k-vectoriales como lo hace el clasico
operador de Laplace y el propio operador sandwich estandar.



La ausencia de esta propiedad provoca que puedan existir
funciones (g, ¥)-inframonogénicas con algunas de sus partes
k-vectoriales no (i, ¥)-inframonogénicas.

El operador sandwich no es fuertemente eliptico, lo que im-
plica que no se pueda aplicar el principio del maximo de Hopf
y, por tanto, que en general el problema de Dirichlet asociado a
las funciones que lo anulan esta mal planteado en el sentido de
Hadamard. A diferencia de las funciones armodnicas, en las que
através de los valores en la frontera del dominio se determinan
los valores del interior, para las funciones (¢, ¥ )-inframonogéni-
cas es necesario también conocer los valores de las derivadas
de primer orden sobre la frontera. El planteamiento de los pro-
blemas A y B muestra como se pueden exigir condiciones de
frontera que ayuden a establecer la unicidad de las soluciones
a estos y ademas obtener por medio de descomposiciones de
Helmholtz-Hodge las féormulas explicitas de estas soluciones.
La tipologia de los problemas A y B se puede considerar para
enunciar problemas de frontera relacionados con el sistema
de Lamé-Navier o con ecuaciones diferenciales parciales de
un orden superior a 2. No obstante, la regularidad del dominio
donde se consideran estos problemas parece ser un incon-
veniente si se desease generalizar a dominios mas generales
usando el vector normal de Federer. Los métodos utilizados
para demostrar el buen planteamiento de los problemas Ay B
no son adecuados para cualquier tipo de dominio no regular.
Resulta interesante investigar cuales serian las restricciones
minimas sobre la superficie y las clases de funciones permiti-
das para que estos tipos de problemas sean bien planteados.

La nueva reescritura del sistema de Lamé-Navier provee
una manera de enfocar con mayor rigor algunos aspectos
fisicos de la ecuacion de equilibrio, como los desplazamientos
universales del sistema elastico, los cuales tendran que ser
armonicos e inframonogénicos a la vez. Con el uso del calculo
fraccionario se obtuvieron descomposiciones de Fischer para
el espacio de polinomios homogéneos de R™, las cuales ayu-
dan a comprender algunos conceptos inherentes de la teoria
de la supersimetria en mecanica cuantica. Se pudo constatar
como la no conmutatividad del producto cliffordiano en dimen-
siones superiores provoca el rompimiento de los resultados
obtenidos para bajas dimensiones (Alfonso Santiesteban et al.,
2024). Las descomposiciones de Fischer obtenidas permiten
construir bases ortogonales para el espacio de polinomios
(¢, ¥)-inframonogeénicos y (p,¥)-armonicos, las cuales son
de interés en la caracterizacion general de las componentes
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de la representacion aditiva del vector de desplazamiento del
sistema de Lamé-Navier. El uso de las descomposiciones de
Fischer obtenidas en el tratamiento de problemas de frontera
para la ecuacion de equilibrio es un tema que actualmente
investigan los autores.

Es imprescindible senalar que las distintas descomposi-
ciones aditivas obtenidas para el vector de desplazamiento
de la ecuacion de equilibrio en elasticidad lineal permiten una
comprension profunda sobre la estructura de las soluciones
del sistema elastico. La descomposicion de soluciones parti-
culares de sistemas de Lameé-Navier en términos de funciones
(o, ¥)-inframonogénicas y (¢, ¥)-armaonicas brinda un enfoque
diferente para el estudio de la estructura del vector de despla-
zamiento. Utilizando las modernas técnicas no conmutativas
del analisis de Clifford se generaliza el sistema de Lamé-Navier
a un contexto multidimensional. La pregunta hipotética acerca
de si los sistemas generalizados de Lamé-Navier estudiados
modelan de forma directa a otros fendmenos fisicos, dentro y
fuera de la mecanica de medios continuos, sigue abierta y con
optimismo se indaga en una respuesta positiva.

El presente articulo ofrece un resumen de las contribuciones
realizadas en el estudio de las funciones (g, ¥)-inframonogé-
nicas. Ademas de presentar una revision y sintesis detallada
sobre los resultados mas caracteristicos descubiertos para este
tipo de funciones, en este trabajo se brindan algunas obser-
vaciones y preguntas abiertas no consideradas en la literatura
cientifica hasta el momento. La naturaleza de las funciones
(p, ¥)-inframonogénicas hace que sean todavia mas intere-
santes desde distintos puntos de vista. Sus estrechas rela-
ciones con la ecuacion de equilibrio, asi como la posibilidad
de encontrar descomposiciones de Fischer a través de ellas,
motivan a estudiar nuevas propiedades y representaciones. La
no conmutatividad del producto cliffordiano es el componente
esencial que implica diferencias marcadas con las conocidas
funciones armonicas. Hechos establecidos como el Principio
del Mddulo Maximo no se cumplen en general para las fun-
ciones (yp, ¥)-inframonogénicas. Por tanto, considerar nuevas
condiciones de frontera para los problemas asociados a estos
operadores elipticos (de segundo orden) abre nuevas lineas de
investigacion que pueden entrelazarse con la teoria de Sha-
piro-Lopatinskij en la busqueda del buen planteamiento en el
sentido de Hadamard.
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