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Resumen	 El análisis de Clifford se enfoca en las llamadas funciones mo-
nogénicas, reconocidas como generalizaciones naturales de 
las funciones holomorfas del plano complejo. Debido a la no 
conmutatividad del producto en álgebras de Clifford, surgen 
las funciones inframonogénicas como versión no conmutativa 
de las funciones armónicas. La construcción de operadores 
de Dirac con bases ortonormales arbitrarias de  posibilita el 
surgimiento de una nueva subclase de funciones biarmónicas 
que generalizan a las funciones inframonogénicas. En este 
trabajo se tratará la fórmula integral de Cauchy y un problema 
de salto para este tipo de funciones, así como la conexión con 
el sistema de Lamé-Navier. Al finalizar se mostrarán problemas 
de frontera bien planteados y descomposiciones de Fischer 
para el espacio de polinomios .

Palabras clave: análisis de Clifford, conjuntos estructurales, 
funciones inframonogénicas, operador de Dirac

Abstract	 Clifford analysis focuses in the so-called monogenic functions, 
which are recognized as natural generalizations of the holomor-
phic functions of the complex plane. Due to the non-commu-
tativity of the product in Clifford algebras, the inframonogenic 
functions arise as a non-commutative version of the harmonic 
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ones. The construction of Dirac operators with arbitrary ortho-
normal bases of  makes possible the emergence of a new 
subclass of biharmonic functions that generalize to inframono-
genic functions. In this work, a Cauchy integral formula and a 
jump problem for this type of functions will be discussed, as 
well as the connection with the Lamé-Navier system. At the 
end, well-posed boundary problems and Fischer decompo-
sitions for the polynomial space  will be shown.

Keywords: Clifford analysis, Dirac operator, inframonogenic 
functions, structural sets

Introducción1	 El surgimiento de las álgebras de Clifford se remonta a 1876, 
cuando el matemático inglés William Kingdon Clifford combinó 
las ideas de William Rowan Hamilton con el álgebra exterior 
de Hermann Grassmann para introducir el famoso produc-
to geométrico. Lamentablemente, Clifford solo vivió 33 años 
y no pudo divulgar la mayor parte de su obra. Allá por 1880, 
Rudolf Lipschitz nota que las reflexiones y rotaciones pueden 
ser interpretadas elegantemente usando el álgebra propuesta 
por Clifford. En 1913, el francés Élie Cartan se percata de que 
hay representaciones del grupo especial ortogonal que no son 
tensoriales y que tienen una estructura de álgebra de Clifford, 
conocidas hoy en día como “fibrados espinoriales”. Hasta este 
momento, las ideas abstractas del álgebra no habían sido to-
madas en cuenta en el campo de la física, y para 1924 se acuñó 
el concepto de “espín de un electrón” para explicar experi-
mentos como el efecto Zeeman anómalo y el experimento de 
Stern-Gerlach. Hacia 1925, Erwin Schrödinger descubre la no-
toria ecuación que lleva su nombre y con la cual se describe la 
evolución temporal de una partícula cuántica en el espacio. Dos 
años más tarde, Wolfgang Pauli logra incluir el concepto de espín 
en la ecuación de Schrödinger mediante sus matrices sigma y 
encuentra la ecuación no relativista del electrón. Las matrices 
de Pauli generan el álgebra de Clifford , descubierta en 1913 
por Cartan. Finalmente, en la búsqueda de una factorización de 
la ecuación de Klein-Gordon, Paul Dirac concibió un operador 
diferencial de la forma

 ,

tal que

1	 Este apartado (Introducción) contiene fragmentos de Alfonso Santiesteban et al. (2025).
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 .

La anterior relación implicaba lo siguiente:

 .

Estas condiciones generan el álgebra de Clifford , la cual 
está asociada al álgebra del espacio-tiempo, que es esencial 
para comprender la geometría de la relatividad especial de 
Einstein. Con los trabajos de Rudolf Fueter, Grigore Moisil, David 
Hestenes y Richard Delanghe se constituye una subdisciplina 
del análisis matemático, centrada en el estudio de las solu-
ciones nulas del operador de Dirac sobre álgebras de Clifford. 
En la década de 1970, el norteamericano John Ryan denominó 
esta subdisciplina como “análisis de Clifford”, término utilizado 
actualmente en la literatura científica. Las funciones inframono-
génicas surgen para la solución de un sistema de ecuaciones 
diferenciales parciales de segundo orden:

 ,

donde

denota al clásico operador de Dirac sobre  y construido 
con los generadores  del álgebra de Clifford  
(Gürlebeck y Sprössig, 1990). Estas funciones fueron original-
mente introducidas por Malonek et al. (2010) cuando hallaron 
una descomposición de Fischer para el espacio de polinomios 
homogéneos en términos de polinomios inframonogénicos. 
Los polinomios obtenidos en estas descomposiciones no se 
comportaban ortogonales, en general, a diferencia del caso 
armónico. Los mismos autores también probaron un teorema 
de extensión de Cauchy-Kowalevski para este tipo de funciones 
(Malonek et al., 2011). Ambas aportaciones son esenciales para 
la construcción de bases ortonormales de espacios funcionales 
hipercomplejos. Investigaciones actuales (Moreno García et al., 
2017, 2018, 2020) ofrecen interesantes conexiones y aplicacio-
nes de las funciones inframonogénicas en elasticidad lineal.

Existen suficientes razones que justifican el interés de inves-
tigadores por estas peculiares funciones que surgen específi-
camente por la ausencia de la conmutatividad en el producto 
cliffordiano. El operador de Dirac en estas álgebras factoriza el 
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clásico operador de Laplace en el sentido de que se cumple 
la relación . La ecuación  puede ser vista 
como una versión no conmutativa de la conocida ecuación de 
Laplace. En el contexto del cálculo vectorial, la anterior ecuación 
sándwich restringida a campos vectoriales tridimensionales 

 puede ser reescrita como

.

Puede notarse cómo la ecuación de Laplace toma la forma 
similar

.

El cambio de signo en ambas ecuaciones provoca que la segun-
da de ellas, a diferencia de la primera, sea fuertemente elíptica.

Sea un conjunto . Defínase el siguien-
te conjunto . Actuando sobre , 
donde  es un dominio abierto de , se exponen los operado-
res de Dirac por la izquierda y por la derecha, respectivamente, 
de la forma

 . (1)

Sea  el operador de Laplace -dimensional. Es evidente que 
las igualdades

(2)

se cumplen si y solo si , donde  deno-
ta a la delta de Kronecker. Nótese que la factorización en (2) 
se tiene cuando y solo cuando  es una base ortonormal de 

. Un conjunto  con esta propiedad es llamado “conjunto 
estructural”. Nôno (1983, 1986) y Koriyama et al. (2011) fueron 
de los primeros autores en estudiar estas generalizaciones 
dentro del análisis cuaterniónico y, posteriormente, en el con-
texto cliffordiano (Nôno e Inenaga, 1987). El término “conjunto 
estructural” se utiliza por vez primera relacionado con el análisis 
cuaterniónico en los trabajos de Mitelman y Shapiro (1995) y 
Shapiro y Vasilevski (1995), mientras que en un ambiente del 
análisis de Clifford se encuentra el trabajo de Shapiro (1988). 
Las funciones que anulan a estos operadores de Dirac se co-
nocen como “funciones -hiperholomorfas”.
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El uso de conjuntos estructurales arbitrarios posibilita el 
estudio de una gran variedad de sistemas de ecuaciones en 
derivadas parciales. La ecuación sándwich generalizada

surge al considerar dos conjuntos estructurales:  y  . Las 
soluciones de esta ecuación son nombradas como “funciones 

-inframonogénicas” (Alfonso Santiesteban et al., 2022a) y 
representan una generalización de las ya conocidas funciones 
inframonogénicas. El objetivo del presente trabajo es realizar 
una revisión detallada de algunos de los principales resultados 
obtenidos en la literatura para las funciones -inframo-
nogénicas. Entre ellos consideraremos las representaciones 
integrales de Borel-Pompeiu y de Cauchy, las relaciones con 
la transformada de Ahlfors-Beurling, el uso de un operador de 
Teodorescu para resolver problemas de frontera en dominios 
con frontera fractal, la reescritura del sistema de Lamé-Navier, 
el planteamiento y resolución de dos problemas de frontera 
bien planteados en el sentido de Hadamard y algunas descom-
posiciones de Fischer. Para una discusión profunda del uso de 
dos bases ortonormales simultáneamente referimos al lector a 
Abreu Blaya et al. (2015, 2016, 2017) y Bory Reyes et al. (2016).

Metodología	 Los métodos de investigación empleados en este trabajo se 
determinaron con base en los objetivos y las tareas de investiga-
ción planteadas. En particular fueron considerados los siguien-
tes: histórico-lógico, análisis y síntesis, inducción y deducción, 
y a nivel empírico: experimental y modelación; todos de gran 
utilidad en el estudio de fuentes de información y el procesa-
miento de los fundamentos científicos. Se hace necesario el 
uso de un cuerpo teórico enfocado en los temas del álgebra no 
conmutativa, la geometría fractal, el análisis hipercomplejo y el 
cálculo fraccionario, que a grandes rasgos incluye el producto 
de Fischer, la derivada de Caputo, las relaciones de Weyl, los 
operadores Gamma y Euler, el operador fraccionario de Dirac 
sobre un fibrado espinorial, la condición de -sumabilidad, las 
transformadas de Cauchy y de Teodorescu, el -operador, 
la compacidad de operadores integrales singulares sobre el 
espacio de funciones -integrables, las ecuaciones integrales 
de tipo Fredholm y el problema espectral asociado al operador 
sándwich. Por ello, en la siguiente sección se introducen algunas 
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nociones básicas relacionadas con las álgebras de Clifford y 
la teoría de funciones -hipercomplejas.

Nociones preliminares2	 El álgebra real de Clifford  se genera mediante la base ca-
nónica  de , bajo las reglas de multiplicación: 

 . La ya mencionada 
álgebra asociativa y no conmutativa constituye el espacio lineal 

-dimensional generado por los -vectores que forman los 
elementos de la base canónica, es decir:

.

Las álgebras de Clifford tienen innumerables aplicaciones, como 
un manejo efectivo de las rotaciones en un espacio de alta di-
mensión con el empleo de los llamados “grupos espinoriales”, en 
particular el grupo de Lorentz de la relatividad especial. Además, 
estas álgebras permiten reinterpretar y manipular algebraica-
mente muchos conceptos de interés dentro de la física teórica, 
la computación, el análisis y la geometría.

El espacio euclidiano  está inmerso en el álgebra de Clifford 

 al identificar cada vector  con el 

vector cliffordiano . Cualquier elemento   

puede ser escrito como , donde  son constan-

tes reales y  recorre todos los posibles conjuntos ordenados 

 o  y . 

Note que entonces cualquier  se puede reescribir de 

forma única como  , donde  denota 

la proyección de  en . Aquí  denota el subespa-

cio de -vectores definido por  . Es 

costumbre identificar a  con  (los conocidos escalares) 

y a  con  (el conjunto de vectores). Los elemen-

tos en  son llamados bivectores, y los elementos en , 

pseudoescalares.
El producto de un 1-vector  y un -vector  estará dado 

por la suma de un -vector y un -vector:

,

donde

 y .

2	 Este apartado (Nociones preliminares) contiene fragmentos de Alfonso Santiesteban et al. (2025).



111 Generalizaciones de las funciones
inframonogénicas en el análisis de Clifford

ISSN: 2395-8847 | Vol. 19, No. 1, enero-junio 2026

Los productos interior y exterior entre  y  serán definidos 
por  y , respectivamente. 
La conjugación en  es definida como el antiautomorfismo 

, donde . Una norma  sobre  
es definida por  para . Observe que para 

 se obtiene que , la norma euclidiana usual.
Se considerarán funciones definidas sobre dominios  

y con valores en . Estas funciones son escritas como 
, donde  son funciones reales. Las nociones 

de continuidad, diferenciabilidad e integrabilidad tienen el usual 
sentido a través de todas sus componentes reales, es decir, 
una función  satisface una de estas propiedades si todas sus 
componentes reales  la satisfacen (Brackx et al., 1982; De-
langhe, 2001; Delanghe et al., 2001; Liu y Hong, 2018). Reciente-
mente, el operador de Dirac ha sido el tema central de estudio 
en muchas áreas de la matemática y la física-matemática. Las 
propiedades locales de las soluciones de este operador han 
conducido a la teoría de funciones conocida como “análisis de 
Clifford” (Gürlebeck y Nguyen, 2014; Liu y Hong, 2018).

El operador de Dirac se define como

y las funciones que este anula se llaman “funciones monogé-
nicas”. Dicho operador juega el mismo rol en esta teoría que 
el clásico operador de Cauchy-Riemann para las funciones 
holomorfas del plano complejo. Una función que toma valores 
en , definida y diferenciable en un abierto  de , se 
denomina “monogénica por la izquierda (monogénica por la 
derecha)” en  si  en .

El operador generalizado de Dirac puede construirse consi-
derando una base ortonormal arbitraria de  y se define de 
la siguiente forma:

,

donde  es dicha base. En la literatura, como 
se mencionó en la introducción, el término “conjunto estructural” 
es atribuido a estas bases ortonormales arbitrarias (Shapiro, 
1988). De esta forma, se introducen las funciones -hiperho-
lomorfas (por la izquierda o derecha, respectivamente) como 
aquellas que pertenecen a  o . Se denotará 
a los espacios de funciones -hiperholomorfas por la izquierda y 
por la derecha sobre un dominio  con las simbologías:  
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y , respectivamente. El operador previo también factoriza 
al operador de Laplace, como lo hace el de Dirac estándar.

Dado otro conjunto estructural , recien-
temente se ha estudiado la siguiente subclase de funciones 
biarmónicas:

,

las cuales son denominadas funciones -inframonogénicas 
(Alfonso Santiesteban et al., 2022a). Las funciones -hiperho-
lomorfas por la izquierda y -hiperholomorfas por la derecha 
son casos particulares de funciones -inframonogénicas. 
Cuando  , la clase anterior se convierte en 
la clase de las funciones inframonogénicas, cuyas interesantes 
relaciones con el sistema de Lamé-Navier en elasticidad lineal 
y otros temas afines han sido objeto de estudio de varios in-
vestigadores (Alfonso Santiesteban, 2024; Malonek et al., 2010; 
Moreno García et al., 2018). Dichas funciones pueden verse 
como una versión no conmutativa de las conocidas funciones 
armónicas, pero se ha comprobado que existen significativas 
diferencias entre ambas, como que el problema de Dirichlet 
deja de ser bien planteado en el sentido de Hadamard (More-
no García et al., 2022). Se pueden construir polinomios 
-inframonogénicos sobre dominios elipsoidales tales que en 
la frontera se anulan. En la Figura 1 se muestran los espacios 
de funciones -inframonogénicas, -hiperholomorfas por 
la izquierda, -hiperholomorfas por la derecha y biarmónicas. 
Este último espacio se denotará por .
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Figura 1.

Espacios de funciones -inframonogénicas, 

-hiperholomorfas por la izquierda, -hiperholomorfas 

por la derecha y biarmónicas

Fuente: elaboración propia

Cabe mencionar que el uso de dos conjuntos estructurales arbi-
trarios también posibilita el estudio de una nueva clase de funcio-
nes definidas como las soluciones de la ecuación . 
Estas funciones se conocen como -armónicas y cons-
tituyen asimismo un subespacio propio de las biarmónicas 
(Serrano Ricardo et al., 2021). La utilización de conjuntos es-
tructurales permite encontrar nuevas perspectivas en varias 
líneas de investigación relacionadas con mapeos M-conformes, 
transformadas de Ahlfors-Beurling, fórmulas alternativas de Ko-
losov-Muskhelishvili y descomposiciones aditivas de polinomios 
contragénicos. Además, con los conjuntos estructurales se 
pueden reconsiderar desde un punto de vista diferente muchos 
problemas antiguos de geometría y análisis, como el recíproco 
de una función monogénica y la composición de una función 
monogénica y una transformación de Möbius.

En el siguiente esquema se mostrarán algunas relaciones 
de jerarquía entre estas clases funcionales a través de la fac-
torización del bilaplaciano mediante los operadores elípticos 

 y .
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Esquema 1.

Relaciones jerárquicas entre distintas clases funcionales

Fuente: elaboración propia

Una interesante propiedad de las funciones -inframono-
génicas, que también poseen las funciones armónicas, es la 
presentada por Alfonso Santiesteban et al. (2022b):

Proposición 1	 Una función  es -inframonogénica en  si y solo si cada 
componente -vectorial , , es -inframono-
génica en .

Demostración	 La implicación inversa se demuestra gracias a la siguiente des-
composición aditiva:

.

Es evidente que, si  para todo , 
entonces . Para la prueba de la implicación directa 
se procede como sigue. La acción del operador generalizado 
de Dirac sobre cada componente -vectorial de la función  
puede ser vista como

,

donde

y

.
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Mediante un cálculo sencillo se obtiene que

,

o sea, el operador  transforma -vectores en -vectores. 
Si , entonces

.

Como  , entonces necesariamente    
para cada , lo que concluye la demostración.

Sin embargo, esta propiedad no es válida en general para con-
juntos estructurales diferentes. Como un simple contraejemplo, 
tomemos la función    
y sean los siguientes dos conjuntos estructurales de

 y . Por cál-
culos directos es fácil comprobar que , mientras 
que  y  . No obstante, 
una versión débil de la propiedad enunciada en la Proposición 
1 puede ser obtenida. Una función  es -inframonogénica 
en  si y solo si sus partes par

e impar

también lo son. En el ejemplo anterior descrito evidentemente 
se verifica esta propiedad, ya que  y
				       .

La solución fundamental del operador  es dada por 
, donde  es la solución fundamental del 

laplaciano -dimensional. Los núcleos de Cauchy generan los 
siguientes dos operadores integrales:

y

,

donde  es un dominio abierto y simplemente conexo de  
con una frontera  suficientemente suave,  y 
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 denota a la -ésima componente del vector normal, unitario 
y exterior a  en el punto . Los operadores anteriores son 
conocidos como transformadas de Teodorescu y de Cauchy, 
respectivamente. Cuando , la segunda transformada se 
convierte en la transformada integral de Cauchy tradicional 
asociada a un conjunto estructural. Intercambiando los nú-
cleos singulares con la función se obtienen las versiones de 
los operadores anteriores por la derecha. El teorema de Stokes, 
convenientemente usado, conecta estas transformadas de Teo-
dorescu y de Cauchy con una transformada multidimensional 
de Ahlfors-Beurling definida por  (Abreu Blaya 
et al., 2016). Se introducirán los siguientes nuevos operadores:

,
(3)

 ,
(4)

,
(5)

 ,
(6)

donde , siendo  la -ésima componente del 
vector normal, unitario y exterior sobre la frontera , 

 y . A partir de estos se intro-
ducen los siguientes operadores:

,                 .

El primero de estos se identifica como una transformada de 
Cauchy -inframonogénica, mientras que el segundo re-
presenta una generalización de la transformada de Teodorescu 
y cumple la siguiente importante relación de invertibilidad:

.

Se remite al lector a Alfonso Santiesteban et al. (2022a), don-
de se prueba la anterior relación. Los operadores (3), (4), (5) y 
(6) pueden ser concebidos cuando la función  aparece a la 
izquierda del núcleo y tomarían las siguientes formas:

,

,
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,

.

Las versiones por la izquierda de las transformadas de Teodo-
rescu y de Cauchy -inframonogénicas se definirían como

,            .

Las anteriores transformadas cumplen las mismas propiedades 
que sus análogas por la derecha. En el desarrollo de todo el tra-
bajo se usarán las transformadas en su versión por la derecha; 
compréndase que resultados similares pueden ser obtenidos 
si se asumen las respectivas transformadas por la izquierda.

Problema de salto	 Sea  un dominio abierto y acotado de  con una frontera  
suficientemente suave. Como se ha mencionado anteriormente, 
una función , , se puede representar 
como

,

donde . Entiéndase una función real -veces 
continuamente diferenciable en el cerrado  como aquella 
cuyas derivadas parciales de orden  son continuas en  y 
hasta la frontera de este dominio (Loomis y Sternberg, 1990).

En el estudio de la teoría de funciones -inframonogé-
nicas, una fórmula de tipo Borel-Pompeiu es un elemento fun-
damental. En Alfonso Santiesteban et al. (2022a) se demuestra 
la siguiente fórmula de representación integral:

Teorema 1
(fórmula de Borel-Pompeiu)

	 Sea . Entonces en  se tiene que

.
(7)

Para funciones -inframonogénicas sobre , la transfor-
mada de tipo Teodorescu en (7) se anula y se obtiene que los 
valores de la función en  son determinados según los valo-
res de la función y de sus derivadas de primer orden sobre la 
frontera del dominio. Este resultado se muestra en el siguiente 
corolario que brinda una fórmula integral de tipo Cauchy para 
estas funciones.
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Corolario 1
(fórmula integral
de Cauchy)

	 Sea  una función -in-
framonogénica en , entonces esta puede ser representada 
como

,         . (8)

La fórmula (8) permite resolver de forma inmediata el siguiente 
problema de salto:

donde  se asumen como funciones de Hölder con exponente 
 sobre . Según las fórmulas de Plemelj-Sokhotski y 

la representación (8), se obtiene que la función

es la solución del problema de salto anterior. La unicidad de 
esta solución es asegurada por una combinación de los teo-
remas de Painlevé y de Liouville en análisis de Clifford (Brackx 
et al., 1982). Este problema de salto es un caso específico de 
problema de tipo Riemann-Hilbert, cuya resolución, para casos 
generales, se dificulta usando el método tradicional presentado 
por Gakhov (1990) debido a que el operador de Dirac aparece 
involucrado por diferentes lados de la función.

El -operador complejo, o transformada de Ahlfors-Beur-
ling, es muy utilizado en análisis complejo en la teoría de ma-
peos cuasiconformes en el plano. Este operador fuertemente 
singular se comporta isométrico sobre  y, en el sentido 
de distribuciones, se tiene que  (Ahlfors, 2006; 
Bañuelos y Janakiraman, 2008; Calderón y Zygmund, 1954; 
Donaldson y Sullivan, 1989). Cabe mencionar que algunas ex-
tensiones naturales del -operador complejo pueden ser con-
cebidas utilizando la transformada de Teodorescu del análisis 
de Clifford (Gürlebeck, 1998; Gürlebeck et al., 1999; Krauss-
har y Malonek, 2001). El operador  puede ser considerado 
como una generalización multidimensional de  y muchas de 
sus propiedades de invertibilidad y mapeo son descritas por 
Abreu Blaya et al. (2016). En nuestro contexto, este operador 
tiene la importante característica de que mapea  sobre 
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. Una generalización de la fórmula de Borel-Pompeiu 
es la demostrada por Alfonso Santiesteban et al. (2022a) que 
se presenta a continuación:

Teorema 2	 Sea , entonces

. (9)

Observe que cuando la función es -inframonogénica, 
se obtiene una representación de esta transformada de Ahl-
fors-Beurling solo mediante integrales de superficie. Por tanto, 
solo basta conocer los valores de la función y de sus derivadas 
en la frontera para conocer la transformada en todo el dominio.

A continuación, se mostrará un resultado relacionado con 
el problema de salto cuando el dominio tiene frontera fractal 
(Alfonso Santiesteban et al., 2022a). En este caso, la técnica 
de trabajo está inspirada en la utilizada por Kats (1983) para las 
funciones holomorfas en el plano complejo. Para ello se asume 
que la frontera de los dominios satisface la condición de ser 
-sumable en el sentido de Harrison y Norton (1992). Una curva 
 se dice que es -sumable si la integral impropia

converge, donde  representa el número mínimo de bolas 
de radio  necesarias para cubrir . Además de ello, se asu-
mirán las trazas del problema sobre la clase de Lipschitz de 
orden superior.

Sea  un entero no negativo y . Las clases de Lips-
chitz de orden superior, denotadas por la notación  , 
consisten en colecciones de funciones continuas reales

definidas en  tales que satisfacen las siguientes condiciones 
de compatibilidad:

								        ,

donde  y . En este caso  es un multiíndice y se 
utilizan las notaciones propias para estos. Whitney (1934) probó 
que tal colección de funciones puede ser extendida mediante 
una función de Hölder continuamente diferenciable hasta el 
orden  y con exponente .
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Las nociones de conjunto -sumable y de clases de Lips-
chitz de orden superior son extendidas de un modo similar al 
contexto multidimensional. El siguiente resultado para el pro-
blema de salto asociado a funciones -inframonogénicas 
es probado por Alfonso Santiesteban et al. (2022a):

	 Sea  y sea -sumable con .
	 Entonces el problema de salto

tiene una solución dada por

,

donde  y  denotan respectivamente a los dominios interior 
y exterior,  es la función característica de  y  representa la 
extensión de Whitney para .

La unicidad del problema de salto para el caso de dominios 
fractales no se puede garantizar directamente debido a que 
el teorema de Painlevé no es válido para tal nivel de irregulari-
dad geométrica. Sin embargo, para el caso de dominios con 
frontera suave, sí es posible asegurar la unicidad de la solución 
dada por la fórmula integral de Cauchy, usando las fórmulas 
de Plemelj-Sokhotski.

Sistema de Lamé-Navier	 El análisis complejo ha permitido estudiar y resolver problemas 
elásticos utilizando las conocidas fórmulas de Kolosov-Mus-
khelishvili, mientras que el análisis de Clifford ha ayudado a 
reinterpretar elegantemente muchas de las ecuaciones de la 
elasticidad lineal desde un contexto multidimensional.

Un campo de desplazamiento tridimensional  en un material 
elástico lineal, isótropo, homogéneo y sin fuerzas de volumen 
es descrito por el sistema de Lamé-Navier:

, (10)

donde ,  son los coeficientes de Lamé. Este 
sistema fue introducido en 1837 por Gabriel Lamé en el método 
de separación de variables para la solución de la ecuación de 

Teorema 3 
(problema de salto)
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onda en coordenadas elípticas (Lamé, 1837). Sus aplicaciones 
cubren muchas ramas, como la electrostática lineal, los siste-
mas hamiltonianos caóticos y la teoría de los condensados de 
Bose-Einstein (Malvern, 1969; Marsden y Hughes, 1983; Mus-
khelishvili, 1953; Sokolnikoff, 1958). Estudios recientes lograron 
establecer una estrecha relación entre las soluciones de este 
sistema y las funciones inframonogénicas del análisis de Clifford 
(Alfonso Santiesteban et al., 2023a). En Moreno García et al. 
(2018) se ha hecho una reescritura del sistema de Lamé-Navier 
(10) en términos del operador de Dirac tridimensional:

. (11)

Por otra parte, en Alfonso Santiesteban et al. (2022b) se ge-
neraliza de una forma natural el sistema (11) para conjuntos 
estructurales arbitrarios. Se arribó a dos posibles generaliza-
ciones en :

(12)

y

, (13)

donde  son dos conjuntos estructurales y para abre-
viar se usa la notación , . Como 
consecuencia de las restricciones de Lamé, se tendrá que 

. Observe que la ecuación (13) contiene el operador 
sándwich generalizado  y el operador . Como se 
mencionó anteriormente, las funciones que anulan este último 
operador también han sido estudiadas y reciben el nombre de 
funciones -armónicas (Serrano Ricardo et al., 2021). Se 
introduce así la siguiente clase funcional:

.

Si los conjuntos estructurales son equivalentes, entonces la 
anterior clase funcional se reduce a la clase de funciones ar-
mónicas . Una de las aplicaciones del estudio de estos 
sistemas radica en que determinadas soluciones de los siste-
mas de Lamé-Navier no homogéneos son también soluciones 
de sistemas generalizados para ciertos conjuntos estructurales 
escogidos. Lo anterior permite obtener algunas de las represen-
taciones y teoremas de descomposición descritos en Alfonso 
Santiesteban et al. (2022b).
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Teorema 4	 Si un campo vectorial  satisface en  el sistema genera-
lizado de Lamé-Navier (12), entonces este admite en  la des-
composición única, salvo un campo vectorial en  , 
de la forma

, (14)

donde  e .

Teorema 5	 Sea  que satisface a la generalización (12) en . Si  
es armónico y -inframonogénico en , entonces este 
admite la representación única, salvo un campo vectorial 
en , de la forma

, (15)

donde  e .

Teorema 6	 Sea  que satisface (12) en . Si  es armónico en , en-
tonces este admite la representación única, salvo un campo 
vectorial en , de la forma

. (16)

donde  e .

Ejemplo 1.

El campo vectorial tridimensional

satisface el siguiente sistema de Lamé-Navier en presencia de 

una fuerza de volumen constante:

.

Si se escogen los conjuntos estructurales

y

,
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se obtiene que

 .

Haciendo uso del Teorema 6 se arriba a la siguiente relación:

 ,

donde

e

.

La relación anterior representa una descomposición aditiva del 
vector de desplazamiento  en términos de dos funciones que 
surgen naturalmente en el análisis de Clifford.

El análisis complejo es bien conocido que las funciones ar-
mónicas pueden ser descompuestas en la suma de una función 
holomorfa y una antiholomorfa. Sin embargo, en general, las 
funciones armónicas sobre álgebras de Clifford no pueden ser 
representadas por la suma de una función monogénica y una 
antimonogénica (ver Nguyen, 2015). Ante esto, resulta intere-
sante que a través de sistemas generalizados de Lamé-Navier 
se puedan obtener descomposiciones aditivas de funciones 
armónicas, cuyas componentes son campos espinoriales esen-
cialmente definidos en álgebras de Clifford y que generalizan 
a las conocidas funciones monogénicas. Este punto de vista 
abre el debate de discusión sobre las posibles estructuras que 
puede tener el vector de desplazamiento del sistema elástico.

Problemas de contorno
bien planteados

	 En Alfonso Santiesteban et al. (2023b) se consideran dos pro-
blemas de frontera para un sistema elíptico de segundo orden 
de ecuaciones diferenciales parciales de la forma  
en un dominio regular y acotado , donde  es un campo 
-vectorial continuo. Las condiciones de contorno contienen 

al producto interior y exterior de la solución -vectorial  con 
el operador de Dirac y el vector normal  a , provocando 
que dichos problemas sean bien planteados en el sentido de 
Hadamard. Las propiedades espectrales del operador sánd-
wich  son tratadas utilizando la teoría de Fredholm. Por 
último, se muestra que las buenas propiedades obtenidas no 



124 Generalizaciones de las funciones
inframonogénicas en el análisis de Clifford

ISSN: 2395-8847 | Vol. 19, No. 1, enero-junio 2026

se satisfacen en el caso más general cuando se sustituye el 
operador de Dirac clásico por operadores asociados a bases 
ortonormales arbitrarias del espacio -dimensional.

En general, el problema de Dirichlet para esta clase de fun-
ciones está mal planteado en el sentido de Hadamard. La con-
dición de frontera de Dirichlet no es suficiente para garantizar 
un correcto planteamiento de los problemas. Por ello, Alfonso 
Santiesteban et al. (2023b) estudiaron dos problemas cuyas 
condiciones en la frontera del dominio sí garantizaban su buen 
planteamiento. Se enunciarán a continuación y se hará un bre-
ve esbozo de los principales resultados hallados. Sea  una 
función -vectorial continua sobre el dominio , se tienen los 
siguientes problemas:

Problema A	 Encontrar en  las soluciones de la 
ecuación  que satisfacen las condiciones de fron-
tera:

. (17)

Problema B	 Encontrar en  las soluciones de la 
ecuación  que satisfacen las condiciones de fron-
tera:

. (18)

Estos problemas se pueden interpretar como generalizaciones 
multidimensionales de los estudiados por Dzhuraev usando 
el análisis vectorial para el operador no fuertemente elíptico 

 (Dzhuraev, 1992). En estos problemas 
la condición de frontera de tipo Dirichlet y la de Neumann posibi-
litarán la unicidad de la solución. No obstante, una aproximación 
no estándar a dichos problemas arroja un mal planteamiento en 
general. Cabe mencionar que existen suficientes evidencias de 
que los problemas A y B, asociados al operador generalizado 

, pueden comportarse bien planteados sobre dominios 
relativamente buenos como la bola unitaria, pero esta conje-
tura sigue estando abierta y es de interés para la comunidad 
matemática vinculada al análisis de Clifford.

A continuación, se tienen las fórmulas de Stokes que fueron 
de gran utilidad en las demostraciones presentadas en Alfonso 
Santiesteban et al. (2023b).
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Teorema 7 
(fórmulas de Stokes)

	 Sea , entonces

,

,

donde

y

.

El siguiente teorema brinda una descomposición de Helm-
holtz-Hodge cuando el dominio es acotado o puede verse 
también como una reescritura de la fórmula de Borel-Pompeiu 
para campos -vectoriales:

Teorema 8
(descomposición de
Helmholtz-Hodge)

	 Sea  un campo -vectorial. En-
tonces se evidencia en  que

.

Un hecho bien conocido del análisis vectorial es que un campo 
vectorial suave está determinado únicamente por su divergencia 
y rotacional sobre el dominio y por su componente normal o 
tangencial sobre la frontera (ver Gibbs y Wilson, 1947, p. 243). 
Un resultado análogo para el análisis de Clifford se presentará 
en el siguiente teorema probado por Alfonso Santiesteban et 
al. (2023b):

Teorema 9	 Un campo -vectorial suave  está determinado 
únicamente en un dominio regular y acotado , cuando  
y  son dados en  como también  o  sobre 
la frontera.

Mediante un procedimiento laborioso se obtuvo el siguiente 
resultado principal:
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Teorema 10	 Sea  con . Entonces, los problemas A y B 
son únicamente solubles y sus soluciones son representadas 
mediante un operador integral, lineal y compacto en  .

El anterior resultado ofrece la posibilidad de resolver el res-
pectivo problema espectral asociado al operador sándwich. 
Mediante una secuencia de razonamientos y cálculos inmedia-
tos se pudo arribar a que las funciones propias del problema 
espectral son soluciones de la siguiente ecuación de Fredholm 
simétrica:

,

donde  es un núcleo singular débil y escalar. Como se men-
cionó anteriormente, la aproximación no estándar a estos 
problemas mediante operadores de Dirac generalizados es 
de poco interés, en el sentido de que los problemas que se 
obtienen están mal planteados según Hadamard. Sin embargo, 
se pueden ofrecer ejemplos donde se aprecia lo interesante 
que resulta considerar conjuntos estructurales no equivalentes 
en el planteamiento de los problemas. El principal obstáculo 
para el buen planteamiento de los problemas asociados a di-
ferentes conjuntos estructurales reside en que el problema de 
primer orden

puede poseer soluciones no triviales en . No obstante, como 
ya se había comentado, se conjetura que, sobre dominios par-
ticulares como la bola, este sistema de primer orden sí se com-
porta bien planteado en el sentido de Hadamard. Note que, 
para conjuntos estructurales equivalentes, el anterior sistema 
se reduce al problema de Dirichlet para las funciones mono-
génicas, el cual se conoce que está bien planteado.

Descomposición de Fischer3	En 1917, el matemático vienés Ernst Fischer prueba que, dado 
un polinomio homogéneo de cualquier grado  con , 
entonces todo polinomio homogéneo  de grado arbitrario 

 e independiente de la dimensión  puede ser descompuesto 

3	 Este apartado (Descomposición de Fischer) contiene fragmentos de Alfonso Santiesteban et al. (2025).
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únicamente como , donde  es 
un polinomio homogéneo de grado  que satisface la ecua-
ción  y  es un polinomio homogéneo de un 
grado adecuado. Aquí,  es el operador diferencial que se 
tiene al reemplazar en el polinomio  cada variable  por la 
correspondiente derivada parcial  (identificación de Fourier). 
Hoy en día, esta descomposición lleva su nombre.

Los portugueses Kähler y Vieira (2014) introdujeron en su mo-
mento un operador de Dirac fraccionario utilizando la derivada 
de Caputo y unas relaciones de Weyl. En Alfonso Santiesteban 
et al. (2024) se definió un nuevo operador de Dirac fraccionario 
construido con un conjunto estructural , para luego obtener 
una descomposición de Fischer en términos de funciones 

-inframonogénicas. Como consecuencia de la ausencia 
de conmutatividad, se mostraron algunas características que 
difieren generalmente de las que se conocen en el clásico caso 
armónico. Finalmente, se probaron algunas descomposiciones 
mediante otras clases de funciones surgidas en el contexto del 
análisis de Clifford y que se vinculan estrechamente con las 
funciones inframonogénicas.

El operador de Dirac definido en Alfonso Santiesteban et al. 
(2024) y la variable fraccionaria generan una superálgebra de 
Lie isomorfa a osp . La superálgebra de Lie osp  está 
definida por tres generadores bosónicos o pares  
(que llevan estados bosónicos a estados bosónicos y estados 
fermiónicos a estados fermiónicos) y dos generadores fer-
miónicos o impares  (que llevan estados bosónicos a 
estados fermiónicos y viceversa), sujetos a las relaciones de 
conmutación en la base de Cartan-Weyl:

.

Dicha superálgebra se presenta en los modelos minimales 
superconformes y en la cuantización de la supergravedad.

Un producto escalar  en el espacio de polinomios homo-
géneos de grado , el cual se denotará por , es definido por
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Este producto es conocido como “producto de Fischer” y cum-
ple las siguientes dos propiedades importantes a causa de dos 
conjuntos estructurales  y :

,

donde ,  y . 
Denótese por  al conjunto de todos los poli-
nomios homogéneos -inframonogénicos de grado . El 
siguiente teorema brinda una descomposición de Fischer por 
polinomios de este tipo:

Teorema 11	 Sea , entonces la siguiente descomposición se cumple:

.

Además, los subespacios  y  son orto-
gonales con respecto al producto de Fischer y se obtiene la 
siguiente descomposición completa:

donde  denota a la conocida función piso.
Sobre el producto tensorial  , y siendo  , 

se introducen los siguientes vectores fraccionarios:

con

					         .

Remitimos al lector a consultar el trabajo preliminar de Kähler y 
Vieira (2014), que aborda muchas de estas ideas del análisis de 
Clifford fraccionario. Se define el operador de Dirac fraccionario 
con respecto al conjunto estructural  de la siguiente forma:
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donde  denota la derivada de Caputo con respecto a 

.

Con el fin de arribar a una descomposición fraccionaria, sean 
las relaciones de Weyl:

.

El vector variable fraccionario  y el operador de Dirac  
generan una superálgebra de Lie finita dimensional e isomorfa 
a osp , la cual es una extensión gradual del álgebra de Lie 
SL(2) (matrices reales de 2 × 2 con traza nula con el corche-
te de Lie dado por el conmutador, mismas que se asocian 
al grupo especial lineal SL(2) de matrices con determinante 
igual a 1). Puede considerarse la más simple y ser vista como 
la versión supersimétrica de SL(2). La versión afín de osp  
relacionada con los modelos minimales superconformes por 
el procedimiento de reducción hamiltoniana también aparece 
en la cuantización de la supergravedad en dos dimensiones y 
su versión topológica. Algunos de los modelos que surgen de 
esta superálgebra están ligados a las supercuerdas no-críticas 
de Ramond-Neveu-Schwarz con tan solo poner un ejemplo.

Denotaremos por  al espacio de polinomios homogé-
neos fraccionarios de grado  que satisfacen  , 
donde  es el operador fraccionario de Euler. 
En efecto, la renormalización

conduce a las relaciones de conmutación estándar que ge-
neran a osp .

Sea ahora  el subespacio cerrado de  que con-
tiene a los polinomios -inframonogénicos fraccionarios, o 
sea, tales que  . Como consecuencia del análisis 
y del cálculo de numerosas relaciones que surgen entre el 
nuevo operador de Dirac y la variable fraccionaria, se obtiene 
el siguiente resultado que puede consultarse en Alfonso San-
tiesteban et al. (2024):
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Teorema 12
(descomposición fraccionaria
de Fischer completa)

	 Para , la siguiente descomposición es válida:

.

A diferencia del caso armónico y monogénico, en general, los 
polinomios representados en la anterior descomposición no 
son mutuamente ortogonales con respecto al producto de Fis-
cher. Sin embargo, sí se puede garantizar la ortogonalidad de 
los polinomios  y  para cuando 

 con   . Si denotamos por  al subes-
pacio de  que contiene a los polinomios -armónicos 
fraccionarios  tales que  , entonces, siguiendo un 
procedimiento análogo, resulta otra descomposición para :

.

No obstante, la ortogonalidad de los polinomios en la repre-
sentación anterior se pierde incluso para cuando  y 

 . En el álgebra  sí se tiene que los polinomios 
de la descomposición completa de Fischer son mutuamente 
ortogonales. Esta álgebra es muy particular y suceden estos 
hechos curiosos que difieren de los obtenidos para dimensiones 
superiores. Para profundizar en las pruebas de estos resultados 
se remite al lector al trabajo reciente de Alfonso Santiesteban 
et al. (2024).

Discusión de resultados	 La consideración de conjuntos estructurales permite obtener una 
familia amplia de ecuaciones diferenciales parciales que agru-
pan conocidas ecuaciones de la física-matemática. Asimismo, 
el elevado grado de flexibilidad que supone considerar conjun-
tos estructurales arbitrarios posibilita agrupar, de una manera 
refinada, una variedad de sistemas de ecuaciones en derivadas 
parciales que tienen una estrecha relación con la ecuación de 
Laplace, fórmulas alternativas de Kolosov-Muskhelishvili en elas-
ticidad lineal, transformadas de Ahlfors-Beurling, -problemas 
y mapeos conformes (Abreu Blaya et al., 2016; Alfonso San-
tiesteban et al., 2022b; Serrano Ricardo et al., 2021).

Cuando se consideran conjuntos estructurales arbitrarios, el 
operador sándwich generalizado  no mantiene invariante 
el espacio de campos -vectoriales como lo hace el clásico 
operador de Laplace y el propio operador sándwich estándar. 
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La ausencia de esta propiedad provoca que puedan existir 
funciones -inframonogénicas con algunas de sus partes 

-vectoriales no -inframonogénicas.
El operador sándwich no es fuertemente elíptico, lo que im-

plica que no se pueda aplicar el principio del máximo de Hopf 
y, por tanto, que en general el problema de Dirichlet asociado a 
las funciones que lo anulan está mal planteado en el sentido de 
Hadamard. A diferencia de las funciones armónicas, en las que 
a través de los valores en la frontera del dominio se determinan 
los valores del interior, para las funciones -inframonogéni-
cas es necesario también conocer los valores de las derivadas 
de primer orden sobre la frontera. El planteamiento de los pro-
blemas A y B muestra cómo se pueden exigir condiciones de 
frontera que ayuden a establecer la unicidad de las soluciones 
a estos y además obtener por medio de descomposiciones de 
Helmholtz-Hodge las fórmulas explícitas de estas soluciones. 
La tipología de los problemas A y B se puede considerar para 
enunciar problemas de frontera relacionados con el sistema 
de Lamé-Navier o con ecuaciones diferenciales parciales de 
un orden superior a 2. No obstante, la regularidad del dominio 
donde se consideran estos problemas parece ser un incon-
veniente si se desease generalizar a dominios más generales 
usando el vector normal de Federer. Los métodos utilizados 
para demostrar el buen planteamiento de los problemas A y B 
no son adecuados para cualquier tipo de dominio no regular. 
Resulta interesante investigar cuáles serían las restricciones 
mínimas sobre la superficie y las clases de funciones permiti-
das para que estos tipos de problemas sean bien planteados.

La nueva reescritura del sistema de Lamé-Navier provee 
una manera de enfocar con mayor rigor algunos aspectos 
físicos de la ecuación de equilibrio, como los desplazamientos 
universales del sistema elástico, los cuales tendrán que ser 
armónicos e inframonogénicos a la vez. Con el uso del cálculo 
fraccionario se obtuvieron descomposiciones de Fischer para 
el espacio de polinomios homogéneos de , las cuales ayu-
dan a comprender algunos conceptos inherentes de la teoría 
de la supersimetría en mecánica cuántica. Se pudo constatar 
cómo la no conmutatividad del producto cliffordiano en dimen-
siones superiores provoca el rompimiento de los resultados 
obtenidos para bajas dimensiones (Alfonso Santiesteban et al., 
2024). Las descomposiciones de Fischer obtenidas permiten 
construir bases ortogonales para el espacio de polinomios 

-inframonogénicos y -armónicos, las cuales son 
de interés en la caracterización general de las componentes 
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de la representación aditiva del vector de desplazamiento del 
sistema de Lamé-Navier. El uso de las descomposiciones de 
Fischer obtenidas en el tratamiento de problemas de frontera 
para la ecuación de equilibrio es un tema que actualmente 
investigan los autores.

Es imprescindible señalar que las distintas descomposi-
ciones aditivas obtenidas para el vector de desplazamiento 
de la ecuación de equilibrio en elasticidad lineal permiten una 
comprensión profunda sobre la estructura de las soluciones 
del sistema elástico. La descomposición de soluciones parti-
culares de sistemas de Lamé-Navier en términos de funciones 

-inframonogénicas y -armónicas brinda un enfoque 
diferente para el estudio de la estructura del vector de despla-
zamiento. Utilizando las modernas técnicas no conmutativas 
del análisis de Clifford se generaliza el sistema de Lamé-Navier 
a un contexto multidimensional. La pregunta hipotética acerca 
de si los sistemas generalizados de Lamé-Navier estudiados 
modelan de forma directa a otros fenómenos físicos, dentro y 
fuera de la mecánica de medios continuos, sigue abierta y con 
optimismo se indaga en una respuesta positiva.

Conclusiones	 El presente artículo ofrece un resumen de las contribuciones 
realizadas en el estudio de las funciones -inframonogé-
nicas. Además de presentar una revisión y síntesis detallada 
sobre los resultados más característicos descubiertos para este 
tipo de funciones, en este trabajo se brindan algunas obser-
vaciones y preguntas abiertas no consideradas en la literatura 
científica hasta el momento. La naturaleza de las funciones 

-inframonogénicas hace que sean todavía más intere-
santes desde distintos puntos de vista. Sus estrechas rela-
ciones con la ecuación de equilibrio, así como la posibilidad 
de encontrar descomposiciones de Fischer a través de ellas, 
motivan a estudiar nuevas propiedades y representaciones. La 
no conmutatividad del producto cliffordiano es el componente 
esencial que implica diferencias marcadas con las conocidas 
funciones armónicas. Hechos establecidos como el Principio 
del Módulo Máximo no se cumplen en general para las fun-
ciones -inframonogénicas. Por tanto, considerar nuevas 
condiciones de frontera para los problemas asociados a estos 
operadores elípticos (de segundo orden) abre nuevas líneas de 
investigación que pueden entrelazarse con la teoría de Sha-
piro-Lopatinskij en la búsqueda del buen planteamiento en el 
sentido de Hadamard.
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Este trabajo está dirigido a facilitar, a los lectores intere-
sados, una rápida comprensión del alcance y belleza de las 
herramientas del análisis de Clifford en el estudio de algunas 
ecuaciones de la física-matemática. Los artículos de Abreu 
Blaya et al. (2015, 2016, 2017), Alfonso Santiesteban et al. (2022a, 
2022b, 2023b, 2024), Bory Reyes et al. (2016), Moreno García 
et al. (2017, 2018, 2020, 2022), Serrano Ricardo et al. (2021) 
y Alfonso Santiesteban (2024), junto con su bibliografía, han 
servido de base para su redacción. Los conceptos y propieda-
des necesarias para la total comprensión del material pueden 
encontrarse en las restantes referencias consideradas. La lista 
contiene adicionalmente algunos de los trabajos relacionados 
y no pretende de ningún modo estar completa.
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